1、中考数学备考之平行四边形压轴突破训练∶培优篇附详细答案 一、平行四边形 1.已知:在菱形ABCD中,E,F是BD上两点,且AE∥CF. 求证:四边形AECF是菱形. 【答案】见解析 【解析】 【分析】 由菱形性质可得AB∥CD,AB=CD,∠ADF=∠CDF,由“SAS”可证△ADF≌△CDF,可得AF=CF,由△ABE≌△CDF,可得AE=CF,由平行四边形判定和菱形判定可得四边形AECF是菱形. 【详解】 证明:∵四边形ABCD是菱形 ∴AB∥CD,AB=CD,∠ADF=∠CDF, ∵AB=CD,∠ADF=∠CDF,DF=DF ∴△ADF≌△CDF(SAS
2、 ∴AF=CF, ∵AB∥CD,AE∥CF ∴∠ABE=∠CDF,∠AEF=∠CFE ∴∠AEB=∠CFD,∠ABE=∠CDF,AB=CD ∴△ABE≌△CDF(AAS) ∴AE=CF,且AE∥CF ∴四边形AECF是平行四边形 又∵AF=CF, ∴四边形AECF是菱形 【点睛】 本题重要考察菱形判定定理,首先要判定其为平行四边形,这是菱形判定基本判定. 2.如图,四边形ABCD中,∠BCD=∠D=90°,E是边AB中点.已知AD=1,AB=2. (1)设BC=x,CD=y,求y有关x函数关系式,并写出定义域; (2)当∠B=70°时,求∠AEC度数; (3
3、当△ACE为直角三角形时,求边BC长. 【答案】(1);(2)∠AEC=105°;(3)边BC长为2或. 【解析】 试题分析:(1)过A作AH⊥BC于H,得到四边形ADCH为矩形.在△BAH中,由勾股定理即可得出结论. (2)取CD中点T,连接TE,则TE是梯形中位线,得ET∥AD,ET⊥CD,∠AET=∠B=70°. 又AD=AE=1,得到∠AED=∠ADE=∠DET=35°.由ET垂直平分CD,得∠CET=∠DET=35°,即可得到结论. (3)分两种状况讨论:①当∠AEC=90°时,易知△CBE≌△CAE≌△CAD,得∠BCE=30°, 解△ABH即可得到结论.
4、②当∠CAE=90°时,易知△CDA∽△BCA,由相似三角形对应边成比例即可得到结论. 试题解析:解:(1)过A作AH⊥BC于H.由∠D=∠BCD=90°,得四边形ADCH为矩形. 在△BAH中,AB=2,∠BHA=90°,AH=y,HB=,∴, 则 (2)取CD中点T,联结TE,则TE是梯形中位线,得ET∥AD,ET⊥CD,∴∠AET=∠B=70°. 又AD=AE=1,∴∠AED=∠ADE=∠DET=35°.由ET垂直平分CD,得∠CET=∠DET=35°,∴∠AEC=70°+35°=105°. (3)分两种状况讨论:①当∠AEC=90°时,易知△CBE≌△CAE≌△CAD,
5、得∠BCE=30°, 则在△ABH中,∠B=60°,∠AHB=90°,AB=2,得BH=1,于是BC=2. ②当∠CAE=90°时,易知△CDA∽△BCA,又, 则(舍负) 易知∠ACE<90°,因此边BC长为. 综上所述:边BC长为2或. 点睛:本题是四边形综合题.考察了梯形中位线,相似三角形判定与性质.解题关键是掌握梯形中常见辅助线作法. 3.已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG. (1)请问EG与CG存在怎样数量关系,并证明你结论; (2)将图①中△BEF绕B点逆时针旋转45°,如图②所
6、示,取DF中点G,连接EG,CG.问(1)中结论与否仍然成立?若成立,请给出证明;若不成立,请阐明理由. (3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接对应线段,问(1)中结论与否仍然成立?(请直接写出成果,不必写出理由) 【答案】(1)证明见解析(2)证明见解析(3)结论仍然成立 【解析】 【分析】 (1)运用直角三角形斜边上中线等于斜边二分之一,可证出CG=EG. (2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明△AMG≌△ENG,得出AG=E
7、G;最终证出CG=EG. (3)结论仍然成立. 【详解】 (1)CG=EG.理由如下: ∵四边形ABCD是正方形,∴∠DCF=90°.在Rt△FCD中,∵G为DF中点,∴CG=FD,同理.在Rt△DEF中,EG=FD,∴CG=EG. (2)(1)中结论仍然成立,即EG=CG. 证法一:连接AG,过G点作MN⊥AD于M,与EF延长线交于N点. 在△DAG与△DCG中,∵AD=CD,∠ADG=∠CDG,DG=DG,∴△DAG≌△DCG(SAS),∴AG=CG; 在△DMG与△FNG中,∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,∴△DMG≌△FNG(ASA),∴MG=NG
8、. ∵∠EAM=∠AEN=∠AMN=90°,∴四边形AENM是矩形,在矩形AENM中,AM=EN.在△AMG与△ENG中,∵AM=EN,∠AMG=∠ENG,MG=NG,∴△AMG≌△ENG(SAS),∴AG=EG,∴EG=CG. 证法二:延长CG至M,使MG=CG,连接MF,ME,EC.在△DCG与△FMG中,∵FG=DG,∠MGF=∠CGD,MG=CG,∴△DCG≌△FMG,∴MF=CD,∠FMG=∠DCG,∴MF∥CD∥AB,∴EF⊥MF. 在Rt△MFE与Rt△CBE中,∵MF=CB,∠MFE=∠EBC=90°,EF=BE,∴△MFE≌△CBE ∴∠MEF=∠CEB,∴∠MEC=
9、∠MEF+∠FEC=∠CEB+∠CEF=90°,∴△MEC为直角三角形. ∵MG=CG,∴EG=MC,∴EG=CG. (3)(1)中结论仍然成立.理由如下: 过F作CD平行线并延长CG交于M点,连接EM、EC,过F作FN垂直于AB于N. 由于G为FD中点,易证△CDG≌△MFG,得到CD=FM,又由于BE=EF,易证∠EFM=∠EBC,则△EFM≌△EBC,∠FEM=∠BEC,EM=EC ∵∠FEC+∠BEC=90°,∴∠FEC+∠FEM=90°,即∠MEC=90°,∴△MEC是等腰直角三角形. ∵G为CM中点,∴EG=CG,EG⊥CG 【点睛】 本题是四边形综合题.(1)
10、关键是运用直角三角形斜边上中线等于斜边二分之一解答;(2)关键是运用了直角三角形斜边上中线等于斜边二分之一性质、全等三角形判定和性质解答. 4.如图,正方形ABCD边长为8,E为BC上一定点,BE=6,F为AB上一动点,把△BEF沿EF折叠,点B落在点B′处,当△AFB′恰好为直角三角形时,B′D长为? 【答案】或 【解析】 【分析】 分两种状况分析:如图1,当∠AB′F=90°时,此时A、B′、E三点共线,过点B′作B′M⊥AB,B′N⊥AD,由三角形面积法则可求得B′M=2.4,再由勾股定理可求得B′N=3.2,在Rt△CB′N中,由勾股定理得,B′D=;如图2,当∠AF
11、B′=90°时,由题意可知此时四边形EBFB′是正方形,AF=2,过点B′作B′N⊥AD,则四边形AFB′N为矩形,在Rt△CB′N中,由勾股定理得,B′D=; 【详解】 如图1,当∠AB′F=90°时,此时A、B′、E三点共线, ∵∠B=90°,∴AE==10, ∵B′E=BE=6,∴AB′=4, ∵B′F=BF,AF+BF=AB=8, 在Rt△AB′F中,∠AB′F=90°,由勾股定理得,AF2=FB′2+AB′2, ∴AF=5,BF=3, 过点B′作B′M⊥AB,B′N⊥AD,由三角形面积法则可求得B′M=2.4,再由勾股定理可求得B′N=3.2, ∴AN=B′M=2.
12、4,∴DN=AD-AN=8-2.4=5.6, 在Rt△CB′N中,由勾股定理得,B′D= = ; 如图2,当∠AFB′=90°时,由题意可知此时四边形EBFB′是正方形,∴AF=2, 过点B′作B′N⊥AD,则四边形AFB′N为矩形,∴AN=B′F=6,B′N=AF=2,∴DN=AD-AN=2, 在Rt△CB′N中,由勾股定理得,B′D= = ; 综上,可得B′D长为或. 【点睛】 本题重要考察正方形性质与判定,矩形有性质判定、勾股定理、折叠性质等,能对地画出图形并能分类讨论是解题关键. 5.(问题情境)在△ABC中,AB=AC,点P为BC所在直线上任一点,过点P作
13、PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.当P在BC边上时(如图1),求证:PD+PE=CF. 证明思绪是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC面积可以证得:PD+PE=CF.(不要证明) (变式探究)(1)当点P在CB延长线上时,其他条件不变(如图3),试探索PD、PE、CF之间数量关系并阐明理由; 请运用上述解答中所积累经验和措施完毕下列两题: (结论运用)(2)如图4,将长方形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD=16,CF=6,
14、求PG+PH值. (迁移拓展)(3)在直角坐标系中,直线l1:y=-x+8与直线l2:y=﹣2x+8相交于点A,直线l1、l2与x轴分别交于点B、点C.点P是直线l2上一种动点,若点P到直线l1距离为2.求点P坐标. 【答案】【变式探究】证明见解析【结论运用】8【迁移拓展】(﹣1,6),(1,10) 【解析】 【变式探究】 连接AP,同理运用△ABP与△ACP面积之差等于△ABC面积可以证得; 【结论运用】 过点E作EQ⊥BC,垂足为Q,根据勾股定理和矩形性质解答即可; 【迁移拓展】 分两种状况,运用结论,求得点P到x轴距离,再运用待定系数法可求出P坐标. 【详解】
15、变式探究:连接AP,如图3: ∵PD⊥AB,PE⊥AC,CF⊥AB,且S△ABC=S△ACP﹣S△ABP, ∴AB•CF=AC•PE﹣ AB•PD. ∵AB=AC, ∴CF=PD﹣PE; 结论运用:过点E作EQ⊥BC,垂足为Q,如图④, ∵四边形ABCD是长方形, ∴AD=BC,∠C=∠ADC=90°. ∵AD=16,CF=6, ∴BF=BC﹣CF=AD﹣CF=5, 由折叠可得:DF=BF,∠BEF=∠DEF. ∴DF=5. ∵∠C=90°, ∴DC==8. ∵EQ⊥BC,∠C=∠ADC=90°, ∴∠EQC=90°=∠C=∠ADC. ∴四边形EQCD
16、是长方形. ∴EQ=DC=4. ∵AD∥BC, ∴∠DEF=∠EFB. ∵∠BEF=∠DEF, ∴∠BEF=∠EFB. ∴BE=BF, 由问题情境中结论可得:PG+PH=EQ. ∴PG+PH=8. ∴PG+PH值为8; 迁移拓展:如图, 由题意得:A(0,8),B(6,0),C(﹣4,0) ∴AB==10,BC=10. ∴AB=BC, (1)由结论得:P1D1+P1E1=OA=8 ∵P1D1=1=2, ∴P1E1=6 即点P1纵坐标为6 又点P1在直线l2上, ∴y=2x+8=6, ∴x=﹣1, 即点P1坐标为(﹣1,6); (2)由结论得:P2
17、E2﹣P2D2=OA=8 ∵P2D2=2, ∴P2E2=10 即点P1纵坐标为10 又点P1在直线l2上, ∴y=2x+8=10, ∴x=1, 即点P1坐标为(1,10) 【点睛】 本题考察了矩形性质与判定、等腰三角形性质与判定及勾股定理等知识点,运用面积法列出等式是处理问题关键. 6.(1)(问题发现) 如图1,在Rt△ABC中,AB=AC=2,∠BAC=90°,点D为BC中点,以CD为一边作正方形CDEF,点E恰好与点A重叠,则线段BE与AF数量关系为 (2)(拓展研究) 在(1)条件下,假如正方形CDEF绕点C旋转,连接BE,CE,AF,线段BE与
18、AF数量关系有无变化?请仅就图2情形给出证明; (3)(问题发现) 当正方形CDEF旋转到B,E,F三点共线时候,直接写出线段AF长. 【答案】(1)BE=AF;(2)无变化;(3)AF长为﹣1或+1. 【解析】 试题分析:(1)先运用等腰直角三角形性质得出AD= ,再得出BE=AB=2,即可得出结论; (2)先运用三角函数得出,同理得出,夹角相等即可得出△ACF∽△BCE,进而得出结论; (3)分两种状况计算,当点E在线段BF上时,如图2,先运用勾股定理求出EF=CF=AD=,BF=,即可得出BE=﹣,借助(2)得出结论,当点E在线段BF延长线上,同前一种状况同样即可得出结
19、论. 试题解析:(1)在Rt△ABC中,AB=AC=2, 根据勾股定理得,BC=AB=2, 点D为BC中点,∴AD=BC=, ∵四边形CDEF是正方形,∴AF=EF=AD=, ∵BE=AB=2,∴BE=AF, 故答案为BE=AF; (2)无变化; 如图2,在Rt△ABC中,AB=AC=2, ∴∠ABC=∠ACB=45°,∴sin∠ABC=, 在正方形CDEF中,∠FEC=∠FED=45°, 在Rt△CEF中,sin∠FEC=, ∴, ∵∠FCE=∠ACB=45°,∴∠FCE﹣∠ACE=∠ACB﹣∠ACE,∴∠FCA=∠ECB, ∴△ACF∽△BCE,∴ =,∴BE=
20、AF, ∴线段BE与AF数量关系无变化; (3)当点E在线段AF上时,如图2, 由(1)知,CF=EF=CD=, 在Rt△BCF中,CF=,BC=2, 根据勾股定理得,BF=,∴BE=BF﹣EF=﹣, 由(2)知,BE=AF,∴AF=﹣1, 当点E在线段BF延长线上时,如图3, 在Rt△ABC中,AB=AC=2,∴∠ABC=∠ACB=45°,∴sin∠ABC=, 在正方形CDEF中,∠FEC=∠FED=45°, 在Rt△CEF中,sin∠FEC= ,∴ , ∵∠FCE=∠ACB=45°,∴∠FCB+∠ACB=∠FCB+∠FCE,∴∠FCA=∠ECB, ∴△ACF∽△BC
21、E,∴ =,∴BE=AF, 由(1)知,CF=EF=CD=, 在Rt△BCF中,CF=,BC=2, 根据勾股定理得,BF=,∴BE=BF+EF=+, 由(2)知,BE=AF,∴AF=+1. 即:当正方形CDEF旋转到B,E,F三点共线时候,线段AF长为﹣1或+1. 7.如图1,在正方形ABCD中,点E,F分别是边BC,AB上点,且CE=BF.连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC. (1)请判断:FG与CE关系是___; (2)如图2,若点E,F分别是边CB,BA延长线上点,其他条件不变,(1)中结论与否仍然成立?请作出判断并予以证明; (3)如图
22、3,若点E,F分别是边BC,AB延长线上点,其他条件不变,(1)中结论与否仍然成立?请直接写出你判断. 【答案】(1)FG=CE,FG∥CE;(2)成立;(3)成立. 【解析】 试题分析:(1)只要证明四边形CDGF是平行四边形即可得出FG=CE,FG∥CE; (2)构造辅助线后证明△HGE≌△CED,运用对应边相等求证四边形GHBF是矩形后,运用等量代换即可求出FG=C,FG∥CE; (3)证明△CBF≌△DCE后,即可证明四边形CEGF是平行四边形. 试题解析:解:(1)FG=CE,FG∥CE; (2)过点G作GH⊥CB延长线于点H.∵EG⊥DE,∴∠GEH+∠DEC=9
23、0°.∵∠GEH+∠HGE=90°,∴∠DEC=∠HE.在△HGE与△CED中,∵∠GHE=∠DCE,∠HGE=∠DEC,EG=DE,∴△HGE≌△CED(AAS),∴GH=CE,HE=CD.∵CE=BF,∴GH=BF.∵GH∥BF,∴四边形GHBF是矩形,∴GF=BH,FG∥CH,∴FG∥CE.∵四边形ABCD是正方形,∴CD=BC,∴HE=BC,∴HE+EB=BC+EB,∴BH=EC,∴FG=EC; (3)∵四边形ABCD是正方形,∴BC=CD,∠FBC=∠ECD=90°.在△CBF与△DCE中,∵BF=CE,∠FBC=∠ECD,BC=DC,∴△CBF≌△DCE(SAS),∴∠BCF=∠
24、CDE,CF=DE.∵EG=DE,∴CF=EG.∵DE⊥EG,∴∠DEC+∠CEG=90°.∵∠CDE+∠DEC=90°,∴∠CDE=∠CEG,∴∠BCF=∠CEG,∴CF∥EG,∴四边形CEGF平行四边形,∴FG∥CE,FG=CE. 8.在中,,BD为AC边上中线,过点C作于点E,过点A作BD平行线,交CE延长线于点F,在AF延长线上截取,连接BG,DF. 求证:; 求证:四边形BDFG为菱形; 若,,求四边形BDFG周长. 【答案】(1)证明见解析(2)证明见解析(3)8 【解析】 【分析】 运用平行线性质得到,再运用直角三角形斜边上中线等于斜边二分之一即可得证
25、 运用平行四边形判定定理判定四边形BDFG为平行四边形,再运用得结论即可得证, 设,则,运用菱形性质和勾股定理得到CF、AF和AC之间关系,解出x即可. 【详解】 证明:,, , 又为AC中点, , 又, , 证明:,, 四边形BDFG为平行四边形, 又, 四边形BDFG为菱形, 解:设,则,, 在中,, 解得:,舍去, , 菱形BDFG周长为8. 【点睛】 本题考察了菱形判定与性质直角三角形斜边上中线,勾股定理等知识,对掌握这些定义性质及判定并结合图形作答是处理本题关键. 9.猜想与证明: 如图1,摆放矩形纸片ABCD与矩形纸片ECGF,使B
26、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF中点,连接DM、ME,试猜想DM与ME关系,并证明你结论. 拓展与延伸: (1)若将”猜想与证明“中纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME关系为 . (2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF中点,试证明(1)中结论仍然成立. 【答案】猜想:DM=ME,证明见解析;(2)成立,证明见解析. 【解析】 试题分析:延长EM交AD于点H,根据ABCD和CEFG为矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根据
27、Rt△HDE得到HM=DE,则可以得到答案;(1)、延长EM交AD于点H,根据ABCD和CEFG为矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根据Rt△HDE得到HM=DE,则可以得到答案;(2)、连接AE,根据正方形性质得出∠FCE=45°,∠FCA=45°,根据RT△ADF中AM=MF得出DM=AM=MF,根据RT△AEF中AM=MF得出AM=MF=ME,从而阐明DM=ME. 试题解析:如图1,延长EM交AD于点H,∵四边形ABCD和CEFG是矩形,∴AD∥EF, ∴∠EFM=∠HAM, 又∵∠FME=∠AMH,FM=AM, 在△FME和△AMH中, ∴△FM
28、E≌△AMH(ASA) ∴HM=EM, 在RT△HDE中,HM=DE, ∴DM=HM=ME, ∴DM=ME. (1)、如图1,延长EM交AD于点H, ∵四边形ABCD和CEFG是矩形, ∴AD∥EF, ∴∠EFM=∠HAM, 又∵∠FME=∠AMH,FM=AM, 在△FME和△AMH中, ∴△FME≌△AMH(ASA) ∴HM=EM, 在RT△HDE中,HM=EM ∴DM=HM=ME, ∴DM=ME, (2)、如图2,连接AE, ∵四边形ABCD和ECGF是正方形, ∴∠FCE=45°,∠FCA=45°, ∴AE和EC在同一条直线上, 在RT△ADF中,
29、AM=MF, ∴DM=AM=MF, 在RT△AEF中,AM=MF, ∴AM=MF=ME, ∴DM=ME. 考点:(1)、三角形全等性质;(2)、矩形性质. 10.如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重叠),GE⊥DC于点E,GF⊥BC于点F,连结AG. (1)写出线段AG,GE,GF长度之间数量关系,并阐明理由; (2)若正方形ABCD边长为1,∠AGF=105°,求线段BG长. 【答案】(1)AG2=GE2+GF2(2) 【解析】 试题分析:(1)结论:AG2=GE2+GF2.只要证明GA=GC,四边形EGFC是矩形,推出GE=CF,在Rt
30、△GFC中,运用勾股定理即可证明; (2)作BN⊥AG于N,在BN上截取一点M,使得AM=BM.设AN=x.易证AM=BM=2x,MN=x,在Rt△ABN中,根据AB2=AN2+BN2,可得1=x2+(2x+x)2,解得x=,推出BN=,再根据BG=BN÷cos30°即可处理问题. 试题解析:(1)结论:AG2=GE2+GF2. 理由:连接CG. ∵四边形ABCD是正方形, ∴A、C有关对角线BD对称, ∵点G在BD上, ∴GA=GC, ∵GE⊥DC于点E,GF⊥BC于点F, ∴∠GEC=∠ECF=∠CFG=90°, ∴四边形EGFC是矩形, ∴CF=GE, 在Rt△G
31、FC中,∵CG2=GF2+CF2, ∴AG2=GF2+GE2. (2)作BN⊥AG于N,在BN上截取一点M,使得AM=BM.设AN=x. ∵∠AGF=105°,∠FBG=∠FGB=∠ABG=45°, ∴∠AGB=60°,∠GBN=30°,∠ABM=∠MAB=15°, ∴∠AMN=30°, ∴AM=BM=2x,MN=x, 在Rt△ABN中,∵AB2=AN2+BN2, ∴1=x2+(2x+x)2, 解得x=, ∴BN=, ∴BG=BN÷cos30°=. 考点:1、正方形性质,2、矩形判定和性质,3、勾股定理,4、直角三角形30度性质 11.在矩形纸片ABCD中,A
32、B=6,BC=8,现将纸片折叠,使点D与点B重叠,折痕为EF,连接DF. (1)阐明△BEF是等腰三角形; (2)求折痕EF长. 【答案】(1)见解析;(2). 【解析】 【分析】 (1)根据折叠得出∠DEF=∠BEF,根据矩形性质得出AD∥BC,求出∠DEF=∠BFE,求出∠BEF=∠BFE即可; (2)过E作EM⊥BC于M,则四边形ABME是矩形,根据矩形性质得出EM=AB=6,AE=BM,根据折叠得出DE=BE,根据勾股定理求出DE、在Rt△EMF中,由勾股定理求出即可. 【详解】 (1)∵现将纸片折叠,使点D与点B重叠,折痕为EF,∴∠DEF=∠BEF. ∵四边
33、形ABCD是矩形,∴AD∥BC,∴∠DEF=∠BFE,∴∠BEF=∠BFE,∴BE=BF,即△BEF是等腰三角形; (2)过E作EM⊥BC于M,则四边形ABME是矩形,因此EM=AB=6,AE=BM. ∵现将纸片折叠,使点D与点B重叠,折痕为EF,∴DE=BE,DO=BO,BD⊥EF. ∵四边形ABCD是矩形,BC=8,∴AD=BC=8,∠BAD=90°. 在Rt△ABE中,AE2+AB2=BE2,即(8﹣BE)2+62=BE2,解得:BE==DE=BF,AE=8﹣DE=8﹣==BM,∴FM=﹣=. 在Rt△EMF中,由勾股定理得:EF==. 故答案为:. 【点睛】 本题考
34、察了折叠性质和矩形性质、勾股定理等知识点,能熟记折叠性质是解答此题关键. 12.(问题发现) (1)如图(1)四边形ABCD中,若AB=AD,CB=CD,则线段BD,AC位置关系为 ; (拓展探究) (2)如图(2)在Rt△ABC中,点F为斜边BC中点,分别以AB,AC为底边,在Rt△ABC外部作等腰三角形ABD和等腰三角形ACE,连接FD,FE,分别交AB,AC于点M,N.试猜想四边形FMAN形状,并阐明理由; (处理问题) (3)如图(3)在正方形ABCD中,AB=2,以点A为旋转中心将正方形ABCD旋转60°,得到正方形AB'C'D',请直接写出BD'平方值.
35、 【答案】(1)AC垂直平分BD;(2)四边形FMAN是矩形,理由见解析;(3)16+8或16﹣8 【解析】 【分析】 (1)根据点A在线段BD垂直平分线上,点C在线段BD垂直平分线上,即可得出AC垂直平分BD; (2)根据Rt△ABC中,点F为斜边BC中点,可得AF=CF=BF,再根据等腰三角形ABD 和等腰三角形ACE,即可得到AD=DB,AE=CE,进而得出∠AMF=∠MAN=∠ANF=90°,即可判定四边形AMFN是矩形; (3)分两种状况:①以点A为旋转中心将正方形ABCD逆时针旋转60°,②以点A为旋转中心将正方形ABCD顺时针旋转60°,分别根据旋转性质以及勾股定理,
36、即可得到结论. 【详解】 (1)∵AB=AD,CB=CD, ∴点A在线段BD垂直平分线上,点C在线段BD垂直平分线上, ∴AC垂直平分BD, 故答案为:AC垂直平分BD; (2)四边形FMAN是矩形.理由: 如图2,连接AF, ∵Rt△ABC中,点F为斜边BC中点, ∴AF=CF=BF, 又∵等腰三角形ABD 和等腰三角形ACE, ∴AD=DB,AE=CE, ∴由(1)可得,DF⊥AB,EF⊥AC, 又∵∠BAC=90°, ∴∠AMF=∠MAN=∠ANF=90°, ∴四边形AMFN是矩形; (3)BD′平方为16+8或16﹣8. 分两种状况: ①以点A为
37、旋转中心将正方形ABCD逆时针旋转60°, 如图所示:过D'作D'E⊥AB,交BA延长线于E, 由旋转可得,∠DAD'=60°, ∴∠EAD'=30°, ∵AB=2=AD', ∴D'E=AD'=,AE=, ∴BE=2+, ∴Rt△BD'E中,BD'2=D'E2+BE2=()2+(2+)2=16+8 ②以点A为旋转中心将正方形ABCD顺时针旋转60°, 如图所示:过B作BF⊥AD'于F, 旋转可得,∠DAD'=60°, ∴∠BAD'=30°, ∵AB=2=AD', ∴BF=AB=,AF=, ∴D'F=2﹣, ∴Rt△BD'F中,BD'2=BF2+D'F2=(
38、2+(2-)2=16﹣8 综上所述,BD′平方长度为16+8或16﹣8. 【点睛】 本题属于四边形综合题,重要考察了正方形性质,矩形判定,旋转性质,线段垂直平分线性质以及勾股定理综合运用,处理问题关键是作辅助线构造直角三角形,根据勾股定理进行计算求解.解题时注意:有三个角是直角四边形是矩形. 13.如图1,矩形ABCD中,AB=8,AD=6;点E是对角线BD上一动点,连接CE,作EF⊥CE交AB边于点F,以CE和EF为邻边作矩形CEFG,作其对角线相交于点H. (1)①如图2,当点F与点B重叠时,CE= ,CG= ; ②如图3,当点E是BD中点时,CE= ,CG= ;
39、 (2)在图1,连接BG,当矩形CEFG伴随点E运动而变化时,猜想△EBG形状?并加以证明; (3)在图1,值与否会发生变化?若不变,求出它值;若变化,阐明理由; (4)在图1,设DE长为x,矩形CEFG面积为S,试求S有关x函数关系式,并直接写出x取值范围. 【答案】(1), ,5, ;(2)△EBG是直角三角形,理由详见解析;(3) ;(4)S=x2﹣x+48(0≤x≤). 【解析】 【分析】 (1)①运用面积法求出CE,再运用勾股定理求出EF即可;②运用直角三角形斜边中线定理求出CE,再运用相似三角形性质求出EF即可; (2)根据直角三角形判定措施:假如一
40、种三角形一边上中线等于这条边二分之一,则这个三角形是直角三角形即可判断; (3)只要证明△DCE∽△BCG,即可处理问题; (4)运用相似多边形性质构建函数关系式即可; 【详解】 (1)①如图2中, 在Rt△BAD中,BD==10, ∵S△BCD=•CD•BC=•BD•CE, ∴CE=.CG=BE=. ②如图3中,过点E作MN⊥AM交AB于N,交CD于M. ∵DE=BE, ∴CE=BD=5, ∵△CME∽△ENF, ∴, ∴CG=EF=, (2)结论:△EBG是直角三角形. 理由:如图1中,连接BH. 在Rt△BCF中,∵FH=CH, ∴BH=FH
41、CH, ∵四边形EFGC是矩形, ∴EH=HG=HF=HC, ∴BH=EH=HG, ∴△EBG是直角三角形. (3)F如图1中,∵HE=HC=HG=HB=HF, ∴C、E、F、B、G五点共圆, ∵EF=CG, ∴∠CBG=∠EBF, ∵CD∥AB, ∴∠EBF=∠CDE, ∴∠CBG=∠CDE, ∵∠DCB=∠ECG=90°, ∴∠DCE=∠BCG, ∴△DCE∽△BCG, ∴. (4)由(3)可知: , ∴矩形CEFG∽矩形ABCD, ∴, ∵CE2=(-x)2+)2,S矩形ABCD=48, ∴S矩形CEFG= [(-x)2+()2]. ∴矩形C
42、EFG面积S=x2-x+48(0≤x≤). 【点睛】 本题考察相似三角形综合题、矩形性质、相似三角形判定和性质、勾股定理、直角三角形判定和性质、相似多边形性质和判定等知识,解题关键是灵活运用所学知识处理问题,学会添加常用辅助线,构造相似三角形或直角三角形处理问题,属于中考压轴题. 14.如图1,若分别以△ABCAC、BC两边为边向外侧作四边形ACDE和BCFG为正方形,则称这两个正方形为外展双叶正方形. (1)发现:如图2,当∠C=90°时,求证:△ABC与△DCF面积相等. (2)引申:假如∠C90°时,(1)中结论还成立吗?若成立,请结合图1给出证明;若不成立,请阐明理由;
43、 (3)运用:如图3,分别以△ABC三边为边向外侧作四边形ACDE、BCFG和ABMN为正方形,则称这三个正方形为外展三叶正方形.已知△ABC中,AC=3,BC=4.当∠C=_____°时,图中阴影部分面积和有最大值是________. 【答案】(1)证明见解析;(2)成立,证明见解析;(3)18. 【解析】 试题分析:(1)由于AC=DC,∠ACB=∠DCF=90°,BC=FC,因此△ABC≌△DFC,从而△ABC与△DFC面积相等; (2)延长BC到点P,过点A作AP⊥BP于点P;过点D作DQ⊥FC于点Q.得到四边形ACDE,BCFG均为正方形,AC=CD,BC=CF,∠ACP
44、∠DCQ.因此△APC≌△DQC. 于是AP=DQ.又由于S△ABC=BC•AP,S△DFC=FC•DQ,因此S△ABC=S△DFC; (3)根据(2)得图中阴影部分面积和是△ABC面积三倍,若图中阴影部分面积和有最大值,则三角形ABC面积最大,当△ABC是直角三角形,即∠C是90度时,阴影部分面积和最大.因此S阴影部分面积和=3S△ABC=3××3×4=18. (1)证明:在△ABC与△DFC中, ∵, ∴△ABC≌△DFC. ∴△ABC与△DFC面积相等; (2)解:成立.理由如下: 如图,延长BC到点P,过点A作AP⊥BP于点P;过点D作DQ⊥FC于点Q. ∴∠APC
45、∠DQC=90°. ∵四边形ACDE,BCFG均为正方形, ∴AC=CD,BC=CF,∠ACP+∠PCD=90°,∠DCQ+∠PCD=90°, ∴∠ACP=∠DCQ. ∴, △APC≌△DQC(AAS), ∴AP=DQ. 又∵S△ABC=BC•AP,S△DFC=FC•DQ, ∴S△ABC=S△DFC; (3)解:根据(2)得图中阴影部分面积和是△ABC面积三倍, 若图中阴影部分面积和有最大值,则三角形ABC面积最大, ∴当△ABC是直角三角形,即∠C是90度时,阴影部分面积和最大. ∴S阴影部分面积和=3S△ABC=3××3×4=18. 考点:四边形综合题
46、 15.已知点O是△ABC内任意一点,连接OA并延长到E,使得AE=OA,以OB,OC为邻边作▱OBFC,连接OF与BC交于点H,再连接EF. (1)如图1,若△ABC为等边三角形,求证:①EF⊥BC;②EF=BC; (2)如图2,若△ABC为等腰直角三角形(BC为斜边),猜想(1)中两个结论与否成立?若成立,直接写出结论即可;若不成立,请你直接写出你猜想成果; (3)如图3,若△ABC是等腰三角形,且AB=AC=kBC,请你直接写出EF与BC之间数量关系. 【答案】(1)见解析; (2)EF⊥BC仍然成立; (3)EF=BC 【解析】 试题分析:(1)由平行四边形性质得到
47、BH=HC=BC,OH=HF,再由等边三角形性质得到AB=BC,AH⊥BC,根据勾股定理得到AH=BC,即可; (2)由平行四边形性质得到BH=HC=BC,OH=HF,再由等腰直角三角形性质得到AB=BC,AH⊥BC,根据勾股定理得到AH=BC,即可; (3)由平行四边形性质得到BH=HC=BC,OH=HF,再由等腰三角形性质和AB=AC=kBC得到AB=BC,AH⊥BC,根据勾股定理得到AH=BC,即可. 试题解析:(1)连接AH,如图1, ∵四边形OBFC是平行四边形, ∴BH=HC=BC,OH=HF, ∵△ABC是等边三角形, ∴AB=BC,AH⊥BC, 在Rt△AB
48、H中,AH2=AB2﹣BH2, ∴AH==BC, ∵OA=AE,OH=HF, ∴AH是△OEF中位线, ∴AH=EF,AH∥EF, ∴EF⊥BC,BC=EF, ∴EF⊥BC,EF=BC; (2)EF⊥BC仍然成立,EF=BC,如图2, ∵四边形OBFC是平行四边形, ∴BH=HC=BC,OH=HF, ∵△ABC是等腰三角形, ∴AB=BC,AH⊥BC, 在Rt△ABH中,AH2=AB2﹣BH2=(BH)2﹣BH2=BH2, ∴AH=BH=BC, ∵OA=AE,OH=HF, ∴AH是△OEF中位线, ∴AH=EF,AH∥EF, ∴EF⊥BC,BC=EF, ∴EF⊥BC,EF=BC; (3)如图3, ∵四边形OBFC是平行四边形, ∴BH=HC=BC,OH=HF, ∵△ABC是等腰三角形, ∴AB=kBC,AH⊥BC, 在Rt△ABH中,AH2=AB2﹣BH2=(kBC)2﹣(BC)2=(k2-)BC2, ∴AH=BH=BC, ∵OA=AE,OH=HF, ∴AH是△OEF中位线, ∴AH=EF,AH∥EF, ∴EF⊥BC,BC=EF, ∴EF=BC. 考点:四边形综合题.






