ImageVerifierCode 换一换
格式:DOC , 页数:27 ,大小:1.31MB ,
资源ID:13010589      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/13010589.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(中考数学备考之平行四边形压轴突破训练∶培优篇附详细答案2.doc)为本站上传会员【知****运】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

中考数学备考之平行四边形压轴突破训练∶培优篇附详细答案2.doc

1、中考数学备考之平行四边形压轴突破训练∶培优篇附详细答案 一、平行四边形 1.已知:在菱形ABCD中,E,F是BD上两点,且AE∥CF. 求证:四边形AECF是菱形. 【答案】见解析 【解析】 【分析】 由菱形性质可得AB∥CD,AB=CD,∠ADF=∠CDF,由“SAS”可证△ADF≌△CDF,可得AF=CF,由△ABE≌△CDF,可得AE=CF,由平行四边形判定和菱形判定可得四边形AECF是菱形. 【详解】 证明:∵四边形ABCD是菱形 ∴AB∥CD,AB=CD,∠ADF=∠CDF, ∵AB=CD,∠ADF=∠CDF,DF=DF ∴△ADF≌△CDF(SAS

2、 ∴AF=CF, ∵AB∥CD,AE∥CF ∴∠ABE=∠CDF,∠AEF=∠CFE ∴∠AEB=∠CFD,∠ABE=∠CDF,AB=CD ∴△ABE≌△CDF(AAS) ∴AE=CF,且AE∥CF ∴四边形AECF是平行四边形 又∵AF=CF, ∴四边形AECF是菱形 【点睛】 本题重要考察菱形判定定理,首先要判定其为平行四边形,这是菱形判定基本判定. 2.如图,四边形ABCD中,∠BCD=∠D=90°,E是边AB中点.已知AD=1,AB=2. (1)设BC=x,CD=y,求y有关x函数关系式,并写出定义域; (2)当∠B=70°时,求∠AEC度数; (3

3、当△ACE为直角三角形时,求边BC长. 【答案】(1);(2)∠AEC=105°;(3)边BC长为2或. 【解析】 试题分析:(1)过A作AH⊥BC于H,得到四边形ADCH为矩形.在△BAH中,由勾股定理即可得出结论. (2)取CD中点T,连接TE,则TE是梯形中位线,得ET∥AD,ET⊥CD,∠AET=∠B=70°. 又AD=AE=1,得到∠AED=∠ADE=∠DET=35°.由ET垂直平分CD,得∠CET=∠DET=35°,即可得到结论. (3)分两种状况讨论:①当∠AEC=90°时,易知△CBE≌△CAE≌△CAD,得∠BCE=30°, 解△ABH即可得到结论.

4、②当∠CAE=90°时,易知△CDA∽△BCA,由相似三角形对应边成比例即可得到结论. 试题解析:解:(1)过A作AH⊥BC于H.由∠D=∠BCD=90°,得四边形ADCH为矩形. 在△BAH中,AB=2,∠BHA=90°,AH=y,HB=,∴, 则 (2)取CD中点T,联结TE,则TE是梯形中位线,得ET∥AD,ET⊥CD,∴∠AET=∠B=70°. 又AD=AE=1,∴∠AED=∠ADE=∠DET=35°.由ET垂直平分CD,得∠CET=∠DET=35°,∴∠AEC=70°+35°=105°. (3)分两种状况讨论:①当∠AEC=90°时,易知△CBE≌△CAE≌△CAD,

5、得∠BCE=30°, 则在△ABH中,∠B=60°,∠AHB=90°,AB=2,得BH=1,于是BC=2. ②当∠CAE=90°时,易知△CDA∽△BCA,又, 则(舍负) 易知∠ACE<90°,因此边BC长为. 综上所述:边BC长为2或. 点睛:本题是四边形综合题.考察了梯形中位线,相似三角形判定与性质.解题关键是掌握梯形中常见辅助线作法. 3.已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG. (1)请问EG与CG存在怎样数量关系,并证明你结论; (2)将图①中△BEF绕B点逆时针旋转45°,如图②所

6、示,取DF中点G,连接EG,CG.问(1)中结论与否仍然成立?若成立,请给出证明;若不成立,请阐明理由. (3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接对应线段,问(1)中结论与否仍然成立?(请直接写出成果,不必写出理由) 【答案】(1)证明见解析(2)证明见解析(3)结论仍然成立 【解析】 【分析】 (1)运用直角三角形斜边上中线等于斜边二分之一,可证出CG=EG. (2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明△AMG≌△ENG,得出AG=E

7、G;最终证出CG=EG. (3)结论仍然成立. 【详解】 (1)CG=EG.理由如下: ∵四边形ABCD是正方形,∴∠DCF=90°.在Rt△FCD中,∵G为DF中点,∴CG=FD,同理.在Rt△DEF中,EG=FD,∴CG=EG. (2)(1)中结论仍然成立,即EG=CG. 证法一:连接AG,过G点作MN⊥AD于M,与EF延长线交于N点. 在△DAG与△DCG中,∵AD=CD,∠ADG=∠CDG,DG=DG,∴△DAG≌△DCG(SAS),∴AG=CG; 在△DMG与△FNG中,∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,∴△DMG≌△FNG(ASA),∴MG=NG

8、. ∵∠EAM=∠AEN=∠AMN=90°,∴四边形AENM是矩形,在矩形AENM中,AM=EN.在△AMG与△ENG中,∵AM=EN,∠AMG=∠ENG,MG=NG,∴△AMG≌△ENG(SAS),∴AG=EG,∴EG=CG. 证法二:延长CG至M,使MG=CG,连接MF,ME,EC.在△DCG与△FMG中,∵FG=DG,∠MGF=∠CGD,MG=CG,∴△DCG≌△FMG,∴MF=CD,∠FMG=∠DCG,∴MF∥CD∥AB,∴EF⊥MF. 在Rt△MFE与Rt△CBE中,∵MF=CB,∠MFE=∠EBC=90°,EF=BE,∴△MFE≌△CBE ∴∠MEF=∠CEB,∴∠MEC=

9、∠MEF+∠FEC=∠CEB+∠CEF=90°,∴△MEC为直角三角形. ∵MG=CG,∴EG=MC,∴EG=CG. (3)(1)中结论仍然成立.理由如下: 过F作CD平行线并延长CG交于M点,连接EM、EC,过F作FN垂直于AB于N. 由于G为FD中点,易证△CDG≌△MFG,得到CD=FM,又由于BE=EF,易证∠EFM=∠EBC,则△EFM≌△EBC,∠FEM=∠BEC,EM=EC ∵∠FEC+∠BEC=90°,∴∠FEC+∠FEM=90°,即∠MEC=90°,∴△MEC是等腰直角三角形. ∵G为CM中点,∴EG=CG,EG⊥CG 【点睛】 本题是四边形综合题.(1)

10、关键是运用直角三角形斜边上中线等于斜边二分之一解答;(2)关键是运用了直角三角形斜边上中线等于斜边二分之一性质、全等三角形判定和性质解答. 4.如图,正方形ABCD边长为8,E为BC上一定点,BE=6,F为AB上一动点,把△BEF沿EF折叠,点B落在点B′处,当△AFB′恰好为直角三角形时,B′D长为? 【答案】或 【解析】 【分析】 分两种状况分析:如图1,当∠AB′F=90°时,此时A、B′、E三点共线,过点B′作B′M⊥AB,B′N⊥AD,由三角形面积法则可求得B′M=2.4,再由勾股定理可求得B′N=3.2,在Rt△CB′N中,由勾股定理得,B′D=;如图2,当∠AF

11、B′=90°时,由题意可知此时四边形EBFB′是正方形,AF=2,过点B′作B′N⊥AD,则四边形AFB′N为矩形,在Rt△CB′N中,由勾股定理得,B′D=; 【详解】 如图1,当∠AB′F=90°时,此时A、B′、E三点共线, ∵∠B=90°,∴AE==10, ∵B′E=BE=6,∴AB′=4, ∵B′F=BF,AF+BF=AB=8, 在Rt△AB′F中,∠AB′F=90°,由勾股定理得,AF2=FB′2+AB′2, ∴AF=5,BF=3, 过点B′作B′M⊥AB,B′N⊥AD,由三角形面积法则可求得B′M=2.4,再由勾股定理可求得B′N=3.2, ∴AN=B′M=2.

12、4,∴DN=AD-AN=8-2.4=5.6, 在Rt△CB′N中,由勾股定理得,B′D= = ; 如图2,当∠AFB′=90°时,由题意可知此时四边形EBFB′是正方形,∴AF=2, 过点B′作B′N⊥AD,则四边形AFB′N为矩形,∴AN=B′F=6,B′N=AF=2,∴DN=AD-AN=2, 在Rt△CB′N中,由勾股定理得,B′D= = ; 综上,可得B′D长为或. 【点睛】 本题重要考察正方形性质与判定,矩形有性质判定、勾股定理、折叠性质等,能对地画出图形并能分类讨论是解题关键. 5.(问题情境)在△ABC中,AB=AC,点P为BC所在直线上任一点,过点P作

13、PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.当P在BC边上时(如图1),求证:PD+PE=CF. 证明思绪是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC面积可以证得:PD+PE=CF.(不要证明) (变式探究)(1)当点P在CB延长线上时,其他条件不变(如图3),试探索PD、PE、CF之间数量关系并阐明理由; 请运用上述解答中所积累经验和措施完毕下列两题: (结论运用)(2)如图4,将长方形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD=16,CF=6,

14、求PG+PH值. (迁移拓展)(3)在直角坐标系中,直线l1:y=-x+8与直线l2:y=﹣2x+8相交于点A,直线l1、l2与x轴分别交于点B、点C.点P是直线l2上一种动点,若点P到直线l1距离为2.求点P坐标. 【答案】【变式探究】证明见解析【结论运用】8【迁移拓展】(﹣1,6),(1,10) 【解析】 【变式探究】 连接AP,同理运用△ABP与△ACP面积之差等于△ABC面积可以证得; 【结论运用】 过点E作EQ⊥BC,垂足为Q,根据勾股定理和矩形性质解答即可; 【迁移拓展】 分两种状况,运用结论,求得点P到x轴距离,再运用待定系数法可求出P坐标. 【详解】

15、变式探究:连接AP,如图3: ∵PD⊥AB,PE⊥AC,CF⊥AB,且S△ABC=S△ACP﹣S△ABP, ∴AB•CF=AC•PE﹣ AB•PD. ∵AB=AC, ∴CF=PD﹣PE; 结论运用:过点E作EQ⊥BC,垂足为Q,如图④, ∵四边形ABCD是长方形, ∴AD=BC,∠C=∠ADC=90°. ∵AD=16,CF=6, ∴BF=BC﹣CF=AD﹣CF=5, 由折叠可得:DF=BF,∠BEF=∠DEF. ∴DF=5. ∵∠C=90°, ∴DC==8. ∵EQ⊥BC,∠C=∠ADC=90°, ∴∠EQC=90°=∠C=∠ADC. ∴四边形EQCD

16、是长方形. ∴EQ=DC=4. ∵AD∥BC, ∴∠DEF=∠EFB. ∵∠BEF=∠DEF, ∴∠BEF=∠EFB. ∴BE=BF, 由问题情境中结论可得:PG+PH=EQ. ∴PG+PH=8. ∴PG+PH值为8; 迁移拓展:如图, 由题意得:A(0,8),B(6,0),C(﹣4,0) ∴AB==10,BC=10. ∴AB=BC, (1)由结论得:P1D1+P1E1=OA=8 ∵P1D1=1=2, ∴P1E1=6 即点P1纵坐标为6 又点P1在直线l2上, ∴y=2x+8=6, ∴x=﹣1, 即点P1坐标为(﹣1,6); (2)由结论得:P2

17、E2﹣P2D2=OA=8 ∵P2D2=2, ∴P2E2=10 即点P1纵坐标为10 又点P1在直线l2上, ∴y=2x+8=10, ∴x=1, 即点P1坐标为(1,10) 【点睛】 本题考察了矩形性质与判定、等腰三角形性质与判定及勾股定理等知识点,运用面积法列出等式是处理问题关键. 6.(1)(问题发现) 如图1,在Rt△ABC中,AB=AC=2,∠BAC=90°,点D为BC中点,以CD为一边作正方形CDEF,点E恰好与点A重叠,则线段BE与AF数量关系为    (2)(拓展研究) 在(1)条件下,假如正方形CDEF绕点C旋转,连接BE,CE,AF,线段BE与

18、AF数量关系有无变化?请仅就图2情形给出证明; (3)(问题发现) 当正方形CDEF旋转到B,E,F三点共线时候,直接写出线段AF长. 【答案】(1)BE=AF;(2)无变化;(3)AF长为﹣1或+1. 【解析】 试题分析:(1)先运用等腰直角三角形性质得出AD= ,再得出BE=AB=2,即可得出结论; (2)先运用三角函数得出,同理得出,夹角相等即可得出△ACF∽△BCE,进而得出结论; (3)分两种状况计算,当点E在线段BF上时,如图2,先运用勾股定理求出EF=CF=AD=,BF=,即可得出BE=﹣,借助(2)得出结论,当点E在线段BF延长线上,同前一种状况同样即可得出结

19、论. 试题解析:(1)在Rt△ABC中,AB=AC=2, 根据勾股定理得,BC=AB=2, 点D为BC中点,∴AD=BC=, ∵四边形CDEF是正方形,∴AF=EF=AD=, ∵BE=AB=2,∴BE=AF, 故答案为BE=AF; (2)无变化; 如图2,在Rt△ABC中,AB=AC=2, ∴∠ABC=∠ACB=45°,∴sin∠ABC=, 在正方形CDEF中,∠FEC=∠FED=45°, 在Rt△CEF中,sin∠FEC=, ∴, ∵∠FCE=∠ACB=45°,∴∠FCE﹣∠ACE=∠ACB﹣∠ACE,∴∠FCA=∠ECB, ∴△ACF∽△BCE,∴ =,∴BE=

20、AF, ∴线段BE与AF数量关系无变化; (3)当点E在线段AF上时,如图2, 由(1)知,CF=EF=CD=, 在Rt△BCF中,CF=,BC=2, 根据勾股定理得,BF=,∴BE=BF﹣EF=﹣, 由(2)知,BE=AF,∴AF=﹣1, 当点E在线段BF延长线上时,如图3, 在Rt△ABC中,AB=AC=2,∴∠ABC=∠ACB=45°,∴sin∠ABC=, 在正方形CDEF中,∠FEC=∠FED=45°, 在Rt△CEF中,sin∠FEC= ,∴ , ∵∠FCE=∠ACB=45°,∴∠FCB+∠ACB=∠FCB+∠FCE,∴∠FCA=∠ECB, ∴△ACF∽△BC

21、E,∴ =,∴BE=AF, 由(1)知,CF=EF=CD=, 在Rt△BCF中,CF=,BC=2, 根据勾股定理得,BF=,∴BE=BF+EF=+, 由(2)知,BE=AF,∴AF=+1. 即:当正方形CDEF旋转到B,E,F三点共线时候,线段AF长为﹣1或+1. 7.如图1,在正方形ABCD中,点E,F分别是边BC,AB上点,且CE=BF.连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC. (1)请判断:FG与CE关系是___; (2)如图2,若点E,F分别是边CB,BA延长线上点,其他条件不变,(1)中结论与否仍然成立?请作出判断并予以证明; (3)如图

22、3,若点E,F分别是边BC,AB延长线上点,其他条件不变,(1)中结论与否仍然成立?请直接写出你判断. 【答案】(1)FG=CE,FG∥CE;(2)成立;(3)成立. 【解析】 试题分析:(1)只要证明四边形CDGF是平行四边形即可得出FG=CE,FG∥CE; (2)构造辅助线后证明△HGE≌△CED,运用对应边相等求证四边形GHBF是矩形后,运用等量代换即可求出FG=C,FG∥CE; (3)证明△CBF≌△DCE后,即可证明四边形CEGF是平行四边形. 试题解析:解:(1)FG=CE,FG∥CE; (2)过点G作GH⊥CB延长线于点H.∵EG⊥DE,∴∠GEH+∠DEC=9

23、0°.∵∠GEH+∠HGE=90°,∴∠DEC=∠HE.在△HGE与△CED中,∵∠GHE=∠DCE,∠HGE=∠DEC,EG=DE,∴△HGE≌△CED(AAS),∴GH=CE,HE=CD.∵CE=BF,∴GH=BF.∵GH∥BF,∴四边形GHBF是矩形,∴GF=BH,FG∥CH,∴FG∥CE.∵四边形ABCD是正方形,∴CD=BC,∴HE=BC,∴HE+EB=BC+EB,∴BH=EC,∴FG=EC; (3)∵四边形ABCD是正方形,∴BC=CD,∠FBC=∠ECD=90°.在△CBF与△DCE中,∵BF=CE,∠FBC=∠ECD,BC=DC,∴△CBF≌△DCE(SAS),∴∠BCF=∠

24、CDE,CF=DE.∵EG=DE,∴CF=EG.∵DE⊥EG,∴∠DEC+∠CEG=90°.∵∠CDE+∠DEC=90°,∴∠CDE=∠CEG,∴∠BCF=∠CEG,∴CF∥EG,∴四边形CEGF平行四边形,∴FG∥CE,FG=CE. 8.在中,,BD为AC边上中线,过点C作于点E,过点A作BD平行线,交CE延长线于点F,在AF延长线上截取,连接BG,DF. 求证:; 求证:四边形BDFG为菱形; 若,,求四边形BDFG周长. 【答案】(1)证明见解析(2)证明见解析(3)8 【解析】 【分析】 运用平行线性质得到,再运用直角三角形斜边上中线等于斜边二分之一即可得证

25、 运用平行四边形判定定理判定四边形BDFG为平行四边形,再运用得结论即可得证, 设,则,运用菱形性质和勾股定理得到CF、AF和AC之间关系,解出x即可. 【详解】 证明:,, , 又为AC中点, , 又, , 证明:,, 四边形BDFG为平行四边形, 又, 四边形BDFG为菱形, 解:设,则,, 在中,, 解得:,舍去, , 菱形BDFG周长为8. 【点睛】 本题考察了菱形判定与性质直角三角形斜边上中线,勾股定理等知识,对掌握这些定义性质及判定并结合图形作答是处理本题关键. 9.猜想与证明: 如图1,摆放矩形纸片ABCD与矩形纸片ECGF,使B

26、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF中点,连接DM、ME,试猜想DM与ME关系,并证明你结论. 拓展与延伸: (1)若将”猜想与证明“中纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME关系为   . (2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF中点,试证明(1)中结论仍然成立. 【答案】猜想:DM=ME,证明见解析;(2)成立,证明见解析. 【解析】 试题分析:延长EM交AD于点H,根据ABCD和CEFG为矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根据

27、Rt△HDE得到HM=DE,则可以得到答案;(1)、延长EM交AD于点H,根据ABCD和CEFG为矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根据Rt△HDE得到HM=DE,则可以得到答案;(2)、连接AE,根据正方形性质得出∠FCE=45°,∠FCA=45°,根据RT△ADF中AM=MF得出DM=AM=MF,根据RT△AEF中AM=MF得出AM=MF=ME,从而阐明DM=ME. 试题解析:如图1,延长EM交AD于点H,∵四边形ABCD和CEFG是矩形,∴AD∥EF, ∴∠EFM=∠HAM, 又∵∠FME=∠AMH,FM=AM, 在△FME和△AMH中, ∴△FM

28、E≌△AMH(ASA) ∴HM=EM, 在RT△HDE中,HM=DE, ∴DM=HM=ME, ∴DM=ME. (1)、如图1,延长EM交AD于点H, ∵四边形ABCD和CEFG是矩形, ∴AD∥EF, ∴∠EFM=∠HAM, 又∵∠FME=∠AMH,FM=AM, 在△FME和△AMH中, ∴△FME≌△AMH(ASA) ∴HM=EM, 在RT△HDE中,HM=EM ∴DM=HM=ME, ∴DM=ME, (2)、如图2,连接AE, ∵四边形ABCD和ECGF是正方形, ∴∠FCE=45°,∠FCA=45°, ∴AE和EC在同一条直线上, 在RT△ADF中,

29、AM=MF, ∴DM=AM=MF, 在RT△AEF中,AM=MF, ∴AM=MF=ME, ∴DM=ME. 考点:(1)、三角形全等性质;(2)、矩形性质. 10.如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重叠),GE⊥DC于点E,GF⊥BC于点F,连结AG. (1)写出线段AG,GE,GF长度之间数量关系,并阐明理由; (2)若正方形ABCD边长为1,∠AGF=105°,求线段BG长. 【答案】(1)AG2=GE2+GF2(2) 【解析】 试题分析:(1)结论:AG2=GE2+GF2.只要证明GA=GC,四边形EGFC是矩形,推出GE=CF,在Rt

30、△GFC中,运用勾股定理即可证明; (2)作BN⊥AG于N,在BN上截取一点M,使得AM=BM.设AN=x.易证AM=BM=2x,MN=x,在Rt△ABN中,根据AB2=AN2+BN2,可得1=x2+(2x+x)2,解得x=,推出BN=,再根据BG=BN÷cos30°即可处理问题. 试题解析:(1)结论:AG2=GE2+GF2. 理由:连接CG. ∵四边形ABCD是正方形, ∴A、C有关对角线BD对称, ∵点G在BD上, ∴GA=GC, ∵GE⊥DC于点E,GF⊥BC于点F, ∴∠GEC=∠ECF=∠CFG=90°, ∴四边形EGFC是矩形, ∴CF=GE, 在Rt△G

31、FC中,∵CG2=GF2+CF2, ∴AG2=GF2+GE2. (2)作BN⊥AG于N,在BN上截取一点M,使得AM=BM.设AN=x. ∵∠AGF=105°,∠FBG=∠FGB=∠ABG=45°, ∴∠AGB=60°,∠GBN=30°,∠ABM=∠MAB=15°, ∴∠AMN=30°, ∴AM=BM=2x,MN=x, 在Rt△ABN中,∵AB2=AN2+BN2, ∴1=x2+(2x+x)2, 解得x=, ∴BN=, ∴BG=BN÷cos30°=. 考点:1、正方形性质,2、矩形判定和性质,3、勾股定理,4、直角三角形30度性质 11.在矩形纸片ABCD中,A

32、B=6,BC=8,现将纸片折叠,使点D与点B重叠,折痕为EF,连接DF. (1)阐明△BEF是等腰三角形; (2)求折痕EF长. 【答案】(1)见解析;(2). 【解析】 【分析】 (1)根据折叠得出∠DEF=∠BEF,根据矩形性质得出AD∥BC,求出∠DEF=∠BFE,求出∠BEF=∠BFE即可; (2)过E作EM⊥BC于M,则四边形ABME是矩形,根据矩形性质得出EM=AB=6,AE=BM,根据折叠得出DE=BE,根据勾股定理求出DE、在Rt△EMF中,由勾股定理求出即可. 【详解】 (1)∵现将纸片折叠,使点D与点B重叠,折痕为EF,∴∠DEF=∠BEF. ∵四边

33、形ABCD是矩形,∴AD∥BC,∴∠DEF=∠BFE,∴∠BEF=∠BFE,∴BE=BF,即△BEF是等腰三角形; (2)过E作EM⊥BC于M,则四边形ABME是矩形,因此EM=AB=6,AE=BM. ∵现将纸片折叠,使点D与点B重叠,折痕为EF,∴DE=BE,DO=BO,BD⊥EF. ∵四边形ABCD是矩形,BC=8,∴AD=BC=8,∠BAD=90°. 在Rt△ABE中,AE2+AB2=BE2,即(8﹣BE)2+62=BE2,解得:BE==DE=BF,AE=8﹣DE=8﹣==BM,∴FM=﹣=. 在Rt△EMF中,由勾股定理得:EF==. 故答案为:. 【点睛】 本题考

34、察了折叠性质和矩形性质、勾股定理等知识点,能熟记折叠性质是解答此题关键. 12.(问题发现) (1)如图(1)四边形ABCD中,若AB=AD,CB=CD,则线段BD,AC位置关系为   ; (拓展探究) (2)如图(2)在Rt△ABC中,点F为斜边BC中点,分别以AB,AC为底边,在Rt△ABC外部作等腰三角形ABD和等腰三角形ACE,连接FD,FE,分别交AB,AC于点M,N.试猜想四边形FMAN形状,并阐明理由; (处理问题) (3)如图(3)在正方形ABCD中,AB=2,以点A为旋转中心将正方形ABCD旋转60°,得到正方形AB'C'D',请直接写出BD'平方值.

35、 【答案】(1)AC垂直平分BD;(2)四边形FMAN是矩形,理由见解析;(3)16+8或16﹣8 【解析】 【分析】 (1)根据点A在线段BD垂直平分线上,点C在线段BD垂直平分线上,即可得出AC垂直平分BD; (2)根据Rt△ABC中,点F为斜边BC中点,可得AF=CF=BF,再根据等腰三角形ABD 和等腰三角形ACE,即可得到AD=DB,AE=CE,进而得出∠AMF=∠MAN=∠ANF=90°,即可判定四边形AMFN是矩形; (3)分两种状况:①以点A为旋转中心将正方形ABCD逆时针旋转60°,②以点A为旋转中心将正方形ABCD顺时针旋转60°,分别根据旋转性质以及勾股定理,

36、即可得到结论. 【详解】 (1)∵AB=AD,CB=CD, ∴点A在线段BD垂直平分线上,点C在线段BD垂直平分线上, ∴AC垂直平分BD, 故答案为:AC垂直平分BD; (2)四边形FMAN是矩形.理由: 如图2,连接AF, ∵Rt△ABC中,点F为斜边BC中点, ∴AF=CF=BF, 又∵等腰三角形ABD 和等腰三角形ACE, ∴AD=DB,AE=CE, ∴由(1)可得,DF⊥AB,EF⊥AC, 又∵∠BAC=90°, ∴∠AMF=∠MAN=∠ANF=90°, ∴四边形AMFN是矩形; (3)BD′平方为16+8或16﹣8. 分两种状况: ①以点A为

37、旋转中心将正方形ABCD逆时针旋转60°, 如图所示:过D'作D'E⊥AB,交BA延长线于E, 由旋转可得,∠DAD'=60°, ∴∠EAD'=30°, ∵AB=2=AD', ∴D'E=AD'=,AE=, ∴BE=2+, ∴Rt△BD'E中,BD'2=D'E2+BE2=()2+(2+)2=16+8 ②以点A为旋转中心将正方形ABCD顺时针旋转60°, 如图所示:过B作BF⊥AD'于F, 旋转可得,∠DAD'=60°, ∴∠BAD'=30°, ∵AB=2=AD', ∴BF=AB=,AF=, ∴D'F=2﹣, ∴Rt△BD'F中,BD'2=BF2+D'F2=(

38、2+(2-)2=16﹣8 综上所述,BD′平方长度为16+8或16﹣8. 【点睛】 本题属于四边形综合题,重要考察了正方形性质,矩形判定,旋转性质,线段垂直平分线性质以及勾股定理综合运用,处理问题关键是作辅助线构造直角三角形,根据勾股定理进行计算求解.解题时注意:有三个角是直角四边形是矩形. 13.如图1,矩形ABCD中,AB=8,AD=6;点E是对角线BD上一动点,连接CE,作EF⊥CE交AB边于点F,以CE和EF为邻边作矩形CEFG,作其对角线相交于点H. (1)①如图2,当点F与点B重叠时,CE=  ,CG=  ; ②如图3,当点E是BD中点时,CE=  ,CG=  ;

39、 (2)在图1,连接BG,当矩形CEFG伴随点E运动而变化时,猜想△EBG形状?并加以证明; (3)在图1,值与否会发生变化?若不变,求出它值;若变化,阐明理由; (4)在图1,设DE长为x,矩形CEFG面积为S,试求S有关x函数关系式,并直接写出x取值范围. 【答案】(1), ,5, ;(2)△EBG是直角三角形,理由详见解析;(3) ;(4)S=x2﹣x+48(0≤x≤). 【解析】 【分析】 (1)①运用面积法求出CE,再运用勾股定理求出EF即可;②运用直角三角形斜边中线定理求出CE,再运用相似三角形性质求出EF即可; (2)根据直角三角形判定措施:假如一

40、种三角形一边上中线等于这条边二分之一,则这个三角形是直角三角形即可判断; (3)只要证明△DCE∽△BCG,即可处理问题; (4)运用相似多边形性质构建函数关系式即可; 【详解】 (1)①如图2中, 在Rt△BAD中,BD==10, ∵S△BCD=•CD•BC=•BD•CE, ∴CE=.CG=BE=. ②如图3中,过点E作MN⊥AM交AB于N,交CD于M. ∵DE=BE, ∴CE=BD=5, ∵△CME∽△ENF, ∴, ∴CG=EF=, (2)结论:△EBG是直角三角形. 理由:如图1中,连接BH. 在Rt△BCF中,∵FH=CH, ∴BH=FH

41、CH, ∵四边形EFGC是矩形, ∴EH=HG=HF=HC, ∴BH=EH=HG, ∴△EBG是直角三角形. (3)F如图1中,∵HE=HC=HG=HB=HF, ∴C、E、F、B、G五点共圆, ∵EF=CG, ∴∠CBG=∠EBF, ∵CD∥AB, ∴∠EBF=∠CDE, ∴∠CBG=∠CDE, ∵∠DCB=∠ECG=90°, ∴∠DCE=∠BCG, ∴△DCE∽△BCG, ∴. (4)由(3)可知: , ∴矩形CEFG∽矩形ABCD, ∴, ∵CE2=(-x)2+)2,S矩形ABCD=48, ∴S矩形CEFG= [(-x)2+()2]. ∴矩形C

42、EFG面积S=x2-x+48(0≤x≤). 【点睛】 本题考察相似三角形综合题、矩形性质、相似三角形判定和性质、勾股定理、直角三角形判定和性质、相似多边形性质和判定等知识,解题关键是灵活运用所学知识处理问题,学会添加常用辅助线,构造相似三角形或直角三角形处理问题,属于中考压轴题. 14.如图1,若分别以△ABCAC、BC两边为边向外侧作四边形ACDE和BCFG为正方形,则称这两个正方形为外展双叶正方形. (1)发现:如图2,当∠C=90°时,求证:△ABC与△DCF面积相等. (2)引申:假如∠C90°时,(1)中结论还成立吗?若成立,请结合图1给出证明;若不成立,请阐明理由;

43、 (3)运用:如图3,分别以△ABC三边为边向外侧作四边形ACDE、BCFG和ABMN为正方形,则称这三个正方形为外展三叶正方形.已知△ABC中,AC=3,BC=4.当∠C=_____°时,图中阴影部分面积和有最大值是________. 【答案】(1)证明见解析;(2)成立,证明见解析;(3)18. 【解析】 试题分析:(1)由于AC=DC,∠ACB=∠DCF=90°,BC=FC,因此△ABC≌△DFC,从而△ABC与△DFC面积相等; (2)延长BC到点P,过点A作AP⊥BP于点P;过点D作DQ⊥FC于点Q.得到四边形ACDE,BCFG均为正方形,AC=CD,BC=CF,∠ACP

44、∠DCQ.因此△APC≌△DQC. 于是AP=DQ.又由于S△ABC=BC•AP,S△DFC=FC•DQ,因此S△ABC=S△DFC; (3)根据(2)得图中阴影部分面积和是△ABC面积三倍,若图中阴影部分面积和有最大值,则三角形ABC面积最大,当△ABC是直角三角形,即∠C是90度时,阴影部分面积和最大.因此S阴影部分面积和=3S△ABC=3××3×4=18. (1)证明:在△ABC与△DFC中, ∵, ∴△ABC≌△DFC. ∴△ABC与△DFC面积相等; (2)解:成立.理由如下: 如图,延长BC到点P,过点A作AP⊥BP于点P;过点D作DQ⊥FC于点Q. ∴∠APC

45、∠DQC=90°. ∵四边形ACDE,BCFG均为正方形, ∴AC=CD,BC=CF,∠ACP+∠PCD=90°,∠DCQ+∠PCD=90°, ∴∠ACP=∠DCQ. ∴, △APC≌△DQC(AAS), ∴AP=DQ. 又∵S△ABC=BC•AP,S△DFC=FC•DQ, ∴S△ABC=S△DFC; (3)解:根据(2)得图中阴影部分面积和是△ABC面积三倍, 若图中阴影部分面积和有最大值,则三角形ABC面积最大, ∴当△ABC是直角三角形,即∠C是90度时,阴影部分面积和最大. ∴S阴影部分面积和=3S△ABC=3××3×4=18. 考点:四边形综合题

46、 15.已知点O是△ABC内任意一点,连接OA并延长到E,使得AE=OA,以OB,OC为邻边作▱OBFC,连接OF与BC交于点H,再连接EF. (1)如图1,若△ABC为等边三角形,求证:①EF⊥BC;②EF=BC; (2)如图2,若△ABC为等腰直角三角形(BC为斜边),猜想(1)中两个结论与否成立?若成立,直接写出结论即可;若不成立,请你直接写出你猜想成果; (3)如图3,若△ABC是等腰三角形,且AB=AC=kBC,请你直接写出EF与BC之间数量关系. 【答案】(1)见解析; (2)EF⊥BC仍然成立; (3)EF=BC 【解析】 试题分析:(1)由平行四边形性质得到

47、BH=HC=BC,OH=HF,再由等边三角形性质得到AB=BC,AH⊥BC,根据勾股定理得到AH=BC,即可; (2)由平行四边形性质得到BH=HC=BC,OH=HF,再由等腰直角三角形性质得到AB=BC,AH⊥BC,根据勾股定理得到AH=BC,即可; (3)由平行四边形性质得到BH=HC=BC,OH=HF,再由等腰三角形性质和AB=AC=kBC得到AB=BC,AH⊥BC,根据勾股定理得到AH=BC,即可. 试题解析:(1)连接AH,如图1, ∵四边形OBFC是平行四边形, ∴BH=HC=BC,OH=HF, ∵△ABC是等边三角形, ∴AB=BC,AH⊥BC, 在Rt△AB

48、H中,AH2=AB2﹣BH2, ∴AH==BC, ∵OA=AE,OH=HF, ∴AH是△OEF中位线, ∴AH=EF,AH∥EF, ∴EF⊥BC,BC=EF, ∴EF⊥BC,EF=BC; (2)EF⊥BC仍然成立,EF=BC,如图2, ∵四边形OBFC是平行四边形, ∴BH=HC=BC,OH=HF, ∵△ABC是等腰三角形, ∴AB=BC,AH⊥BC, 在Rt△ABH中,AH2=AB2﹣BH2=(BH)2﹣BH2=BH2, ∴AH=BH=BC, ∵OA=AE,OH=HF, ∴AH是△OEF中位线, ∴AH=EF,AH∥EF, ∴EF⊥BC,BC=EF, ∴EF⊥BC,EF=BC; (3)如图3, ∵四边形OBFC是平行四边形, ∴BH=HC=BC,OH=HF, ∵△ABC是等腰三角形, ∴AB=kBC,AH⊥BC, 在Rt△ABH中,AH2=AB2﹣BH2=(kBC)2﹣(BC)2=(k2-)BC2, ∴AH=BH=BC, ∵OA=AE,OH=HF, ∴AH是△OEF中位线, ∴AH=EF,AH∥EF, ∴EF⊥BC,BC=EF, ∴EF=BC. 考点:四边形综合题.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服