ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:22.87KB ,
资源ID:12953039      下载积分:10.58 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/12953039.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(2026下半年计算机视觉工程师(目标检测)YOLO算法真题.doc)为本站上传会员【zh****1】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2026下半年计算机视觉工程师(目标检测)YOLO算法真题.doc

1、 2026下半年计算机视觉工程师(目标检测)YOLO算法真题 (考试时间:90分钟 满分100分) 班级______ 姓名______ 第I卷(选择题 共40分) (总共8题,每题5分,每题只有一个正确答案,请将正确答案填写在括号内) w1. YOLO算法中,关于特征提取部分,以下说法正确的是( ) A. 只能使用卷积神经网络进行特征提取 B. 传统的手工特征提取方法效果更好 C. 不同版本的YOLO算法在特征提取网络结构上有所不同 D. 特征提取后不需要进行下采样操作 w2. 在YOLO算法中,检测框的预测是基于( ) A.

2、图像的颜色信息 B. 特征图上的位置和大小 C. 图像的纹理信息 D. 图像的边缘信息 w3. YOLO算法的优点不包括以下哪一项( ) A. 速度快 B. 准确率高 C. 对小目标检测效果好 D. 易于训练 w4. 以下哪个不是YOLO算法的版本( ) A. YOLOv1 B. YOLOv2 C. YOLOv3 D. YOLOv5s+ w5. 在YOLO算法中,对于目标类别的预测是通过( ) A. 计算图像的直方图 B. 对特征图进行分类操作 C. 分析图像的形状 D. 统计图像的像素值分布 w6. YOLO算法在处理多尺度目标时,

3、采用的方法是( ) A. 只检测大尺度目标 B. 只检测小尺度目标 C. 使用不同尺度的特征图进行检测 D. 忽略多尺度问题 w7. 以下关于YOLO算法中损失函数的说法,错误的是( ) A. 包含位置损失 B. 包含类别损失 C. 不考虑目标的置信度损失 D. 综合考虑多种因素的损失 w8. YOLO算法在实际应用中,为了提高检测效果,可以采取的措施不包括( ) A. 增加训练数据 B. 调整网络超参数 C. 减少图像分辨率 D. 采用数据增强技术 第II卷(非选择题 共60分) w9. (10分)简述YOLO算法的基本原理。

4、w10. (15分)对比YOLOv3和YOLOv4在网络结构和性能上的差异。 w11. (15分)在YOLO算法中,如何处理目标的遮挡问题?请简要说明。 材料:在实际的目标检测场景中,经常会遇到目标被遮挡的情况,这给YOLO算法的检测带来了挑战。 w12. (20分)结合材料,阐述当目标部分被遮挡时,YOLO算法可能出现的问题以及相应的解决思路。 答案 w1. C w2. B w3. C w4. D w5. B w6. C w7. C w8. C w9. YOLO算法将输入图像划分为多个网格,每个网格负责预测目标的位置、大小和类别。通过卷积神经网

5、络提取图像特征,在特征图上每个网格预测多个边界框及其置信度,同时预测目标类别概率。根据预测结果与真实标签计算损失,通过反向传播更新网络参数,最终实现对目标的检测。 w10. YOLOv3采用了Darknet-53网络结构,引入了多尺度特征融合来检测不同大小目标,性能上速度较快,对常见目标检测效果较好。YOLOv4在网络结构上进一步优化,采用了CSPDarknet53骨干网络,增加了数据增强和训练技巧,性能上在准确率和速度上都有提升,尤其对小目标检测能力增强。 w11. 可以通过增加网络对上下文信息的捕捉能力来处理遮挡问题。比如改进特征提取网络,使其能更好地利用周围环境信息辅助判断目标。也可以在训练数据中增加更多有遮挡情况的样本,让网络学习到遮挡情况下目标的特征模式。还可以结合其他目标检测方法,如先利用一些全局特征初步定位目标,再用YOLO算法进行精确检测,以提高对遮挡目标的检测成功率。 w12. 当目标部分被遮挡时,YOLO算法可能出现检测框定位不准确,因为遮挡部分影响了对目标完整形状和位置的判断。类别预测也可能出错,被遮挡部分特征缺失导致分类困难。解决思路包括:一方面改进网络结构,增强对遮挡目标特征的提取和分析能力;另一方面,利用数据增强技术,生成更多有遮挡情况的训练数据,让网络学习到遮挡目标的特征模式,从而提高在遮挡情况下的检测效果。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服