ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:23.02KB ,
资源ID:12905301      下载积分:10.58 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/12905301.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(2025年高职(大数据技术)数据清洗与预处理阶段测试题及答案.doc)为本站上传会员【cg****1】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2025年高职(大数据技术)数据清洗与预处理阶段测试题及答案.doc

1、 2025年高职(大数据技术)数据清洗与预处理阶段测试题及答案 (考试时间:90分钟 满分100分) 班级______ 姓名______ 第I卷(选择题,共40分) 答题要求:本卷共8题,每题5分。每题给出的四个选项中,只有一项是符合题目要求的。请将正确答案填写在相应位置。 1. 以下哪种数据缺失情况最适合用均值填充法进行处理?( ) A. 数据完全随机缺失 B. 数据存在周期性规律缺失 C. 数据缺失值与其他变量存在明显相关性 D. 数据缺失值是由于系统故障导致的 2. 在数据清洗中,对于重复记录的处理,以下说法正确的是( ) A.

2、直接删除所有重复记录 B. 保留一条重复记录,其余全部删除 C. 根据业务需求,选择合适的重复记录保留策略 D. 不需要处理重复记录 3. 数据标准化的目的不包括( ) A. 消除数据的量纲影响 B. 使不同特征之间具有可比性 C. 提高模型的训练速度 D. 增加数据的噪声 4. 以下哪种算法常用于数据离散化?( ) A. K近邻算法 B. 决策树算法 C. 支持向量机算法 D. 神经网络算法 5. 对于数据中的异常值,以下处理方法中最稳健的是( ) A. 直接删除异常值 B. 用均值替换异常值 C. 基于统计模型识别并修正异常值 D. 不

3、做处理 6. 在数据清洗过程中,对数据进行一致性检查主要是为了( ) A. 确保数据的格式一致 B. 保证不同数据源之间数据的一致性 C. 使数据符合某种特定的规则 D. 提高数据的可读性 7. 数据脱敏技术主要用于( ) A. 提高数据的安全性 B. 减少数据的存储空间 C. 加快数据处理速度 D. 增强数据的可用性 8. 以下哪种数据清洗操作不属于对数据质量的提升?( ) A. 去除无效字符 B. 对数据进行加密 C. 纠正数据中的错误值 D. 补齐缺失数据 第II卷(非选择题,共60分) 二、填空题(每题5分,共15分) 答题

4、要求:请在横线上填写合适的内容。 1. 数据清洗的主要步骤包括数据探查、________、数据转换和数据验证。 2. 常见的数据离散化方法有等宽离散化、等频离散化和________。 3. 在处理缺失值时,除了均值填充法,还有________、中位数填充法等。 三、简答题(每题10分,共20分) 答题要求:简要回答问题,条理清晰。 1. 简述数据标准化的常用方法及其适用场景。 2. 说明数据清洗中去除噪声数据的意义和常用方法。 四、综合分析题(共15分) 材料:现有一批关于某电商平台用户购买行为的数据,其中存在部分数据缺失、重复记录以及一些明显不符合业务逻辑的

5、异常值。 答题要求:请针对该材料,提出一套完整的数据清洗方案,并说明每一步骤的目的和操作方法。 五、算法应用分析题(共10分) 材料:在对某数据集进行数据预处理时,考虑使用决策树算法进行数据离散化。 答题要求:分析决策树算法在数据离散化过程中的原理和优势,并说明如何根据数据集的特点选择合适的决策树参数。 答案: 一、选择题答案:1. A 2. C 3. D 4. B 5. C 6. B 7. A 8. B 二、填空题答案:1. 数据清洗 2. 基于决策树的离散化 3. 多重填补法 三、简答题答案:1. 常用方法有最小-最大标准化,适用于数据分布较为均匀

6、的情况;Z-Score标准化,适用于数据服从正态分布的场景。2. 去除噪声数据可提高数据质量,使分析结果更可靠。常用方法有基于统计的方法,如基于标准差等识别噪声;基于机器学习的方法,如使用聚类算法等将远离聚类中心的数据视为噪声。 四、综合分析题答案:先进行数据探查,了解数据全貌。然后删除重复记录,保证数据唯一性。对于缺失值,若为数值型,用均值或中位数填充;若为分类数据,用最频繁值填充。对于异常值,基于统计模型识别并修正。最后进行数据验证,确保数据质量。 五、算法应用分析题答案:决策树算法通过构建树结构对数据进行划分实现离散化。优势是能自动发现数据中的规律。选择参数时,若数据特征多且复杂,可增大树的深度;若希望离散化结果更简单,可减小树的深度等,根据数据集具体特点灵活调整。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服