ImageVerifierCode 换一换
格式:PPT , 页数:29 ,大小:1.76MB ,
资源ID:12861606      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/12861606.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(二重积分概念.ppt)为本站上传会员【精****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

二重积分概念.ppt

1、单击以编辑,母版标题样式,单击以编辑母版文本样式,第二级,第三级,第四级,第五级,*,第,10,章,一元函数积分学,多元函数积分学,重积分,曲线积分,曲面积分,重 积 分,1,三、二重积分的性质,第,10.1,节,一、引例,二、二重积分的定义与可积性,四、曲顶柱体体积的计算,机动 目录 上页 下页 返回 结束,二重积分的概念与性质,2,解法,:,类似定积分解决问题的思想,:,一、引例,1.,曲顶柱体的体积,给定曲顶柱体,:,底:,xoy,面上的闭区域,D,顶,:,连续曲面,侧面:,以,D,的边界为准线,母线平行于,z,轴的柱面,求其体积,.,“,大化小,常代变,近似和,求 极限”,机动 目录

2、上页 下页 返回 结束,3,1)“,大化小”,用,任意,曲线网分,D,为,n,个区域,以它们为底把曲顶柱体分为,n,个,2)“,常代变”,在每个,3),“,近似和,”,则,中,任取,一点,小曲顶柱体,机动 目录 上页 下页 返回 结束,4,4),“,取极限,”,令,机动 目录 上页 下页 返回 结束,5,2.,平面薄片的质量,有一个平面薄片,在,xoy,平面上占有区域,D,计算该薄片的质量,M,.,度为,设,D,的面积为,则,若,非常数,仍可用,其面密,“,大化小,常代变,近似和,求 极限”,解决,.,1)“,大化小”,用,任意,曲线网分,D,为,n,个小区域,相应把薄片也分为小区域,.,机动

3、 目录 上页 下页 返回 结束,6,2)“,常代变”,中,任取,一点,3)“,近似和”,4)“,取极限”,则第,k,小块的质量,机动 目录 上页 下页 返回 结束,7,两个问题的,共性,(,分割,求和,求极限,),(1),解决问题的步骤相同,(2),所求量的结构式相同,“,大化小,常代变,近似和,取极限”,曲顶柱体体积,:,平面薄片的质量,:,机动 目录 上页 下页 返回 结束,8,二、二重积分的定义及可积性,定义,:,将区域,D,任意,分成,n,个小区域,任取,一点,若存在一个常数,I,使,可积,在,D,上的,二重积分,.,积分和,积分域,被积函数,积分表达式,面积元素,记作,是定义在有界区

4、域,D,上的有界函数,机动 目录 上页 下页 返回 结束,9,引例,1,中曲顶柱体体积,:,引例,2,中平面薄板的质量,:,如果 在,D,上可积,也常,二重积分记作,这时,分区域,D,因此面积元素,可用平行坐标轴的直线来划,记作,机动 目录 上页 下页 返回 结束,10,二重积分存在定理,:,若函数,定理,2,.,(,证明略,),定理,1,.,在,D,上,可积,.,限个点或有限个光滑曲线外都连续,积,.,在有界闭区域,D,上连续,则,若有界函数,在有界闭区域,D,上除去有,例如,在,D,:,上二重积分存在,;,在,D,上,二重积分不存在,.,机动 目录 上页 下页 返回 结束,11,三、二重积

5、分的性质,(,k,为常数,),为,D,的面积,则,机动 目录 上页 下页 返回 结束,12,特别,由于,则,5.,若在,D,上,6.,设,D,的面积为,则有,机动 目录 上页 下页 返回 结束,(估值不等式),13,7.,(,二重积分的中值定理,),证,:,由性质,6,可知,由连续函数介值定理,至少有一点,在闭区域,D,上,为,D,的面积,则至少存在一点,使,使,连续,因此,机动 目录 上页 下页 返回 结束,14,例,1.,比较下列积分的大小,:,其中,解,:,积分域,D,的边界为圆周,它与,x,轴交于点,(1,0),而域,D,位,从而,于直线的上方,故在,D,上,机动 目录 上页 下页 返

6、回 结束,15,例,2.,判断积分,的正负号,.,解,:,分积分域为,则,原式,=,猜想结果为负,但不好估计,.,舍去此项,机动 目录 上页 下页 返回 结束,16,例,3.,估计下列积分之值,解,:,D,的面积为,由于,积分性质,5,即,:1.96,I 2,D,机动 目录 上页 下页 返回 结束,17,8.,设函数,D,位于,x,轴上方的部分为,D,1,当区域关于,y,轴对称,函数关于变量,x,有奇偶性时,仍,在,D,上,在闭区域上连续,域,D,关于,x,轴对称,则,则,有类似结果,.,在第一象限部分,则有,机动 目录 上页 下页 返回 结束,18,四、曲顶柱体体积的计算,设曲顶柱的底为,任

7、取,平面,故曲顶柱体体积为,截面积为,截柱体的,机动 目录 上页 下页 返回 结束,19,同样,曲顶柱的底为,则其体积可按如下两次积分计算,机动 目录 上页 下页 返回 结束,20,例,4.,求两个底圆半径为,R,的直角圆柱面所围的体积,.,解,:,设两个直圆柱方程为,利用对称性,考虑第一卦限部分,其曲顶柱体的顶为,则所求体积为,机动 目录 上页 下页 返回 结束,21,内容小结,1.,二重积分的定义,2.,二重积分的性质,(,与定积分性质相似,),3.,曲顶柱体体积的计算,二次积分法,机动 目录 上页 下页 返回 结束,22,被积函数,相同,且,非负,练习,解,:,由它们的积分域范围可知,1

8、比较下列积分值的大小关系,:,机动 目录 上页 下页 返回 结束,23,2.,设,D,是第二象限的一个有界闭域,且,0,y,1,则,的大小顺序为,(),提示,:,因,0,y,1,故,故在,D,上有,机动 目录 上页 下页 返回 结束,24,3.,计算,解,:,机动 目录 上页 下页 返回 结束,25,4,.,证明,:,其中,D,为,解,:,利用题中,x,y,位置的对称性,有,又,D,的面积为,1,故结论成立,.,机动 目录 上页 下页 返回 结束,26,习题,10-1,3,,,4,,,5,7,第二节 目录 上页 下页 返回 结束,作业,27,备用题,1.,估计,的值,其中,D,为,解,:,被积函数,D,的面积,的最大值,的最小值,机动 目录 上页 下页 返回 结束,28,2.,判断,的正负,.,解:,当,时,,故,又当,时,,于是,机动 目录 上页 下页 返回 结束,29,

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服