ImageVerifierCode 换一换
格式:PPT , 页数:43 ,大小:421KB ,
资源ID:12861057      下载积分:12 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/12861057.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(eviews:序列的统计量、检验和分布.ppt)为本站上传会员【精***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

eviews:序列的统计量、检验和分布.ppt

1、单击此处编辑母版标题样式,.,*,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,第一章 序列的统计量、检验和分布,EViews,提供序列的各种统计图、统计方法及过程。当用前述的方法向工作文件中读入数据后,就可以对这些数据进行统计分析和图表分析。,EViews可以计算一个序列的各种统计量并可用表、图等形式将其表现出来。视图包括最简单的曲线图,一直到核密度估计。,1,.,打开工作文件,双击一个序列名,即进入序列的对话框。单击“,view”,可看到菜单分为四个区,第一部分为序列显示形式,第二和第三部分提供数据统计方法,第四部分是转换选项和标签。,2,.,1.1,描述统计量,以直方图显示序

2、列的频率分布。直方图将序列的长度按等间距划分,显示观测值落入每一个区间的个数。,同直方图一起显示的还有一些标准的描述统计量。这些统计量都是由样本中的观测值计算出来的。如图(例1.1):,3,.,例1.3中,GDP,增长率的统计量:,4,.,均值,(,mean),即序列的平均值,用序列数据的总和除以数据的个数。,中位数,(median),即从小到大排列的序列的中间值。是对序列分布中心的一个粗略估计。,最大最小值,(max and min),序列中的最大最小值。,标准差,(Standard Deviation),标准差衡量序列的离散程度。计算公式如下,N,是样本中观测值的个数,是样本均值。,5,.

3、偏度,(,Skewness,),衡量序列分布围绕其均值的非对称性。计算公式如下,是变量方差的有偏估计。如果序列的分布是对称的,,S,值为0;正的,S,值意味着序列分布有长的右拖尾,负的,S,值意味着序列分布有长的左拖尾。例1.1中X的偏度为0,说明X的分布是对称的;而例1.3中GDP增长率的偏度是0.78,说明GDP增长率的分布是不对称的。,6,.,峰度,(,Kurtosis,),度量序列分布的凸起或平坦程度,计算公式如下,分布的凸起程度大于 正态分布;如果,K,值小于3,序列分布相对于正态分布是平坦的。例1.1中X的峰度为2.5,说明X的分布相对于正态分布是平坦的;而例1.3中GDP增长率

4、的峰度为2.14,说明GDP增长率的分布相对于正态分布也是平坦的。,意义同,S,中,,,正态分布的,K,值为3。如果,K,值大于3,,7,.,Jarque,-,Bera,检验,检验序列是否服从正态分布。统计量计算公式如下,S,为偏度,,K,为峰度,,k,是序列估计式中参数的个数。,在正态分布的原假设下,J-B统计量是自由度为2的,2,分布。J-B统计量下显示的概率值(P值)是J-B统计量超出原假设下的观测值的概率。如果该值很小,则拒绝原假设。当然,在不同的显著性水平下的拒绝域是不一样的。例1.1中X的J-B统计量下显示的概率值(P值)是0.92,接受原假设,X 服从正态分布;而例1.3中GDP

5、增长率的的J-B统计量的概率值(P值)是0.455,也接受原假设,说明GDP增长率服从正态分布。,8,.,1.2 均值、中位数、方差的假设检验,这部分是对序列均值、中位数、方差的假设检验。在序列对象菜单选择,View/tests for descriptive stats/simple hypothesis tests,,就会出现下面的序列分布检验对话框:,9,.,1.均值检验,如果不指定序列,x,的标准差,EViews将在,t,统计量中使用该标准差的估计值,s,。,是,x,的样本估计值,,,N,是,x,的观测值的个数。在原假设下,如果,x,服从正态分布,,t,统计量是自由度为,N,-1的t分

6、布,。,原假设是序列,x,的期望值,m,,,备选假设是,m,,,即,10,.,如果给定,x,的标准差,,EViews,计算,t,统计量:,是指定的,x,的标准差。,要进行均值检验,在Mean内输入,值。如果已知标准差,想要计算t统计量,在,右边,的框内输入标准差值。可以输入任何数或标准EViews表达式,下页我们给出检验的输出结果。,11,.,这是检验例1.7中GDP增长率的均值,,检验,H,0,:,X,=,10%,,,H,1,:,X,10%,。,表中的Probability值是P值(边际显著水平)。在双边假设下,如果这个值小于检验的显著水平,如0.05则拒绝原假设。这里我们不能拒绝原假设。,

7、12,.,2.,方差检验,检验的原假设为序列,x,的方差等于,2,,备选假设为双边的,,x,的方差不等于,2,,即,EViews计算,2,统计量,计算公式如下,N,为观测值的个数,为,x,的样本均值。在原假设下,如果,x,服从正态分布,,2,统计量是服从自由度为,N,-1的,2,分布,。,要,进行方差检验,在Variance处填入在原假设下的方差值。可以填入任何正数或表达式。,13,.,3,.,中位数检验,原假设为序列,x,的中位数等于,m,,,备选假设为双边假设,,x,的中位数不等于,m,,,即,EViews提供了三个以排序为基础的无参数的检验统计量。方法的主要参考来自于Conover(19

8、80)和Sheskin(1997)。,进行中位数检验,在Median右边的框内输入中位数的值,可以输入任何数字表达式。,14,.,1.3,分布函数,EViews提供了几种对数据进行初步分析的方法。在1.1 我们已列出了几种图来描述序列分布特征。在本节,列出了几种散点图且允许我们可以用有参数或无参数过程来做拟合曲线图。,这些图包含着复杂计算和大量的特殊操作,对某些完全技术性的介绍,不必掌握所有细节。EViews中设置的缺省值除了对极特殊的分析外,对一般分析而言是足够用的。直接点击ok键接受缺省设置,就可以轻松的展现出每个图。,15,.,1,.,3.1,序列分布图,本节列出了三种描述序列经验分布特

9、征的图。,1.CDFSurvivorQuantile,图,这个图描绘出带有加或减两个标准误差带的经验累积分布函数,残存函数和分位数函数。在序列菜单中或组菜单中选择View/Distribution/CDFSurvivorQuantile时(组菜单的Multiple Graphs中),就会出现下面的对话框:,16,.,其中,Cumulative Distribution(累积分布)操作用来描绘序列的经验累积函数(CDF)。CDF是序列中观测值不超过指定值,r,的概率,Survivor(残存)操作用来描绘序列的经验残存函数,17,.,Quantile(分位数)操作用来描绘序列的经验分位数。对 0,

10、q,1,X,的分位数,x,(,q,),满足下式:,,且,分位数函数是CDF的反函数,可以通过调换CDF的横纵坐标轴得到。,All选项包括CDF,Survivor和Quantile函数。,Saved matrix name可以允许把结果保存在一个矩阵内。,Include standard errors(包括标准误差)操作标绘接近95%的置信区间的经验分布函数。,18,.,工作文件1_3.wf1中GDP增长率的分布图,19,.,2.QuantileQuantile,图,QuantileQuantile(QQ图)对于比较两个分布是一种简单但重要的工具。这个图标绘出一个被选序列的分位数分布相对于另一个

11、序列的分位数分布或一个理论分布的异同。如果这两个分布是相同的,则QQ图将在一条直线上。如果QQ图不在一条直线上,则这两个分布是不同的。,当选择View/Distribution Graphs/Quantile-Quantile.下面的QQ Plot对话框会出现:,20,.,可以选与如下的理论分布的分位数相比较:,Normal(正态)分布:钟形并且对称的分布.,Uniform(均匀)分布:矩形密度函数分布.,Exponential(指数)分布:联合指数分布是一个有着一条长右尾的正态分布.,Logistic(逻辑)分布:除比正态分布有更长的尾外是一种近似于正态的对称分布.,Extreme valu

12、e(极值)分布:I型极小值分布是有一条左长尾的负偏分布,它非常近似于对数正态分布.,可以在工作文件中选择一些序列来与这些典型序列的分位数相比较,也可以在编辑框中键入序列或组的名称来选择对照的序列或组,EViews将针对列出的每个序列计算出QQ图。,21,.,下图是GDP增长率和指数分布的Q-Q图:,22,.,3.Kernel Density,(,核密度,),这个视图标绘出序列分布的核密度估计。一个序列的分布的最简单非参数密度估计是直方图。通过选View/Descriptive Statistics/Histogram and Stats可以得到直方图,直方图对原点的选择比较敏感并且是不连续的。

13、下图是GDP增长率序列分布的直方图:,23,.,核密度估计用“冲击”代替了直方图中的“框”,所以它是平滑的。平滑是通过给远离被估计的点的观测值以小的权重来达到的。,一个序列,X,在点,x,的核密度估计为:,这里,,N,是观测值的数目,,h,是带宽(或平滑参数),,K,是合并为一体的核函数。,24,.,当选View/Distribution Graphs/Kernel Density会出现下面的核密度对话框:,要展现核密度估计,需要指定如下几项:,25,.,(1)Kernel(,核,),核函数是一个加权函数,它决定冲击的形状。EViews针对核函数,K,提供如下操作:,Epanechnikov(

14、default),Triangular(三角形),Uniform(Rectangular)(均匀分布),Normal(Gaussian)(正态分布),Biweight(Quartic),Triweight,Cosinus,这里,u,是核函数的辐角,,I,(.)是指示函数,辐角为真时,它取 1,否则取 0。,26,.,(2),Bandwidth,(带宽),带宽,h,控制密度估计的平滑程度;带宽越大,估计越平滑。带宽的选取在密度估计中非常重要,缺省设置是一种基于数据的自动带宽,,这里,N,是观测值的数目;,s,是标准离差;,R,是序列的分位数间距;因子,k,是标准带宽变换,标准带宽变换用来调整带宽

15、以便对不同的核函数自动密度估计有大致相当的平滑。,也可以自定带宽,先点击User Specified,在下面的对话框中键入一个非负数。,27,.,下图是GDP增长率序列分布的核密度估计:,28,.,1.3.2,带有拟合线的散点图,通过view/Graph/Scatter打开一个组的视图菜单包括四种散点图。,1.Simple Scatter(简单散点图),其第一个序列在水平轴上,其余的在纵轴上。,2.Scatter with Regression(回归散点图),在组中对第一个序列及第二个序列进行总体变换来进行二元回归,选择Regression后出现对话框:,29,.,工作文件1_5.wf1中的居

16、民消费和GDP的带回归线的散点图,30,.,下面是针对二元拟合的序列变换:,None,Logarithmic,Inverse,Power,Box-Cox,Polynomial,在编辑框中来指定参数a,b。如果变换是不可以的,会出现错误提示,对多项式(Polynomial)的阶数定的过高。EViews会自动降低阶数以避免共线性。,点击ok后,EViews拟合出一条回归线,可以在Fitted Y series编辑框中键入一个名称保存这个拟合的序列。,31,.,Robustness lterations(,稳健叠代,),最小二乘法对一些无关观测值的存在非常敏感,稳健叠代操作就是产生一种对残差平方的加

17、权形式,使无关的观测值在估计参数时被加最小的权数。,这里,x,i,y,i,是变形后的序列,权值,r,通过下式得到:,其中:,e,i,y,i,a,bx,i,,,m,是,|,e,i,|,的中间数,大的残差的观测值给一个小权数。选择叠代次数应是一个整数。,32,.,3.Scatter with Nearest Neighber Fit,(最邻近拟合散点图),这是一种带宽基于最邻近点的局部回归。简而言之,对样本中的每一数据点,它拟合出一条局部的并经加权的回归线。局部是说只用邻近点也就是样本的子集来一步步回归,加权是说邻近点越远给越小的权数。当选择后,会出现如下的对话框:,33,.,因为要靠子样本点周围

18、的点来进行局部回归,并来求拟合值,因此specification操作就是确定选择识别周围进行回归的观测值的规则。,Bandwidth span(带宽范围),用来决定在局部回归中应包括哪些观测值,可以选取在0,1之间的一个数,。,Polynomial degree,(多项式次数,),选择多项式的次数来拟合每一局部回归。,(1),Specification,(说明操作),34,.,(2)Method,操作,可以选择在样本中的每一个数据点作局部回归或在数据点的子集中作局部回归。,Exact(full sample)在样本中的每一数据点都作局部回归,Cleveland subsampling 在选取的

19、子样本中进行回归,可以在编辑框中键入子样本的大小。,35,.,工作文件1_5.wf1中的居民消费和GDP的最邻近点拟合的散点图,36,.,4.Scatter with Kernel Fit,(核拟合分布),这也是一种局部回归拟合,不过是无参数的。另外与最邻近回归拟合相比,区别主要体现在局部带宽的选取上。最邻近拟合的有效带宽可以有很多种,而核拟合则固定带宽且局部的观测值通过核函数来加权。,局部核回归拟合通过选取参数,使加权残差平方和最小。,N,是观测值的个数,,h,是带宽(或光滑参数),,K,是核函数。,注意:对于不同的,x,,,的估计值不同。,37,.,打开Scatter with kerne

20、l fit,出现下面的对话框:,Regression用来指定局部回归的形式,指定多项式的阶数,k,。Nadaraya-Watson操作设置,k,=0。,Local linear操作设置,k,=1。对于高阶多项式,应使用 Local polynomial 操作,可在下面编辑框中输入,k,的值。,38,.,工作文件1_5.wf1中的居民消费和GDP的核拟合的散点图,使用 Local polynomial 操作,,k,=2。,39,.,Kernel用来定义核函数,这里的核函数用来在每个局部回归中给观测值加权,对核函数的操作前面已经介绍过。核心函数如下:,Epanechnikov(default),T

21、riangular,Uniform(Rectangular),Normal(Gaussian),Biweight(Quartic),Triweight,Cosinus,在这里,I,是指示器,1表示真,2表示假。带宽,h,决定每个局部回归的观测值的权数。越大越平滑。,40,.,1.4,相关矩阵及协方差矩阵,在组中可以显示了组中各序列的相关矩阵及协方差矩阵。Common Sample使任何缺数据的序列都被排除在相关及协方差计算之外。,Pairwise Samples用相关序列的所有无丢失观察值计算。此方法使用样本的最大数,但可能导致不确定矩阵。,41,.,1.5,交叉相关,交叉相关(Cross correlation and Correligrams),显示组中头两个序列的交叉相关。序列,X,与,Y,的交叉相关的计算公式如下:,注意与自相关不同,交叉相关不必围绕滞后期对称。交叉相关图中的虚线是二倍的标准差,近似计算。,42,.,居民消费(CS)和GDP的交叉相关系数,43,.,

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服