ImageVerifierCode 换一换
格式:DOC , 页数:14 ,大小:652.50KB ,
资源ID:1285572      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/1285572.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【可****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【可****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(十年真题概率全国高考理科数学.doc)为本站上传会员【可****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

十年真题概率全国高考理科数学.doc

1、真题2008-20(12分)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物血液化验结果呈阳性的即为患病动物,呈阴性即没患病下面是两种化验方法:方案甲:逐个化验,直到能确定患病动物为止方案乙:先任取3只,将它们的血液混在一起化验若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验()求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;()表示依方案乙所需化验次数,求的期望2009-19(12分) 甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束,假设在一局中,甲获胜的概率为0.6,

2、乙获胜的概率为0.4,各局比赛结果相互独立。已知前2局中,甲、乙各胜1局。(1)求甲获得这次比赛胜利的概率;(2)设 表示从第3局开始到比赛结束所进行的局数,求 的分布列及数学期望。2010-18( 12分) 投到某杂志的稿件,先由两位初审专家进行评审若能通过两位初审专家的评审,则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用设稿件能通过各初审专家评审的概率均为05,复审的稿件能通过评审的概率为03各专家独立评审 (I)求投到该杂志的1篇稿件被录用的概率; (II)记表示投到该杂志的4篇稿

3、件中被录用的篇数,求的分布列及期望2011-19(12分)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测试了每件产品的质量指标值,得到下面试验结果:()分别估计用A配方,B配方生产的产品的优质品率;()已知用B配方生成的一件产品的利润y(单位:元)与其质量指标值t的关系式为 从用B配方生产的产品中任取一件,其利润记为X(单位:元),求X的分布列及数学期望.(以实验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)2012-18.(12分

4、)某花店每天以每枝元的价格从农场购进若干枝玫瑰花,然后以每枝元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理。(1)若花店一天购进枝玫瑰花,求当天的利润(单位:元)关于当天需求量(单位:枝,)的函数解析式。 (2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:以100天记录的各需求量的频率作为各需求量发生的概率。(i)若花店一天购进枝玫瑰花,表示当天的利润(单位:元),求的分布列,数学期望及方差;(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由。2013-20 (12分)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比

5、赛结束时,负的一方在下一局当裁判设各局中双方获胜的概率均为,各局比赛的结果相互独立,第1局甲当裁判(1)求第4局甲当裁判的概率;(2)X表示前4局中乙当裁判的次数,求X的数学期望2014-18 从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如图所示的频率分布直方图:第18题图(ZX063)(1)求这500件产品质量指标值的样本平均数x和样本方差 (同一组中的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(,其中近似为样本平均数,近似为样本方差.(i)利用该正态分布,求P(187.8Z212.2);(ii)某用户从该

6、企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX.附:12.2.若ZN(,),则p(Z)0.682 6,p(2Z2)0.954 4.2015-19.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费xi和年销售量yi(i1,2,8)数据作了初步处理,得到下面的散点图及一些统计量的值.46.656.36.8289.81.61469108.8表中,. ()根据散点图判断,yabx与ycd哪一个适宜作为年销售量y关于年宣传

7、费x的回归方程类型?(给出判断即可)()根据()的判断结果及表中数据,建立y关于x的回归方程;()以知这种产品的年利率z与x、y的关系为z0.2yx.根据()的结果回答下列问题:年宣传费x49时,年销售量及年利润的预报值是多少?年宣传费x为何值时,年利率的预报值最大?附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为2016-19(12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台

8、这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记表示2台机器三年内共需更换的易损零件数,表示购买2台机器的同时购买的易损零件数.(I)求的分布列;(II)若要求,确定的最小值;(III)以购买易损零件所需费用的期望值为决策依据,在与之中选其一,应选用哪个?2017-19(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm)根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布(1)假设生产状态正常,记X表示一天内抽取的16个零

9、件中其尺寸在之外的零件数,求及的数学期望;(2)一天内抽检零件中,如果出现了尺寸在之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查()试说明上述监控生产过程方法的合理性;()下面是检验员在一天内抽取的16个零件的尺寸:9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95经计算得,其中为抽取的第个零件的尺寸,用样本平均数作为的估计值,用样本标准差作为的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计和(精确到0.01)附:若

10、随机变量服从正态分布,则,答案2008-20解:()对于甲:次数12345概率0.20.20.20.20.2对于乙:次数234概率0.40.40.2()表示依方案乙所需化验次数,的期望为2009-19【分析】(1)由题意知前2局中,甲、乙各胜1局,甲要获得这次比赛的胜利需在后面的比赛中先胜两局,根据各局比赛结果相互独立,根据相互独立事件的概率公式得到结果(2)由题意知表示从第3局开始到比赛结束所进行的局数,由上一问可知的可能取值是2、3,由于各局相互独立,得到变量的分布列,求出期望【解答】解:记Ai表示事件:第i局甲获胜,(i=3、4、5)Bi表示第j局乙获胜,j=3、4(1)记B表示事件:甲

11、获得这次比赛的胜利,前2局中,甲、乙各胜1局,甲要获得这次比赛的胜利需在后面的比赛中先胜两局,B=A3A4+B3A4A5+A3B4A5由于各局比赛结果相互独立,P(B)=P(A3A4)+P(B3A4A5)+P(A3B4A5)=0.60.6+0.40.60.6+0.60.40.6=0.648(2)表示从第3局开始到比赛结束所进行的局数,由上一问可知的可能取值是2、3由于各局相互独立,得到的分布列P(=2)=P(A3A4+B3B4)=0.52P(=3)=1P(=2)=10.52=0.48E=20.52+30.48=2.482010-18()记 A表示事件:稿件能通过两位初审专家的评审; B表示事件

12、:稿件恰能通过一位初审专家的评审; C表示事件:稿件能通过复审专家的评审; D表示事件:稿件被录用.则 D=A+BC, = = =0.25+0.50.3 =0.40. (),其分布列为: 期望.2011-19()由实验结果知,用A配方生产的产品中优质的平率为,所以用A配方生产的产品的优质品率的估计值为0.3。由实验结果知,用B配方生产的产品中优质品的频率为,所以用B配方生产的产品的优质品率的估计值为0.42()用B配方生产的100件产品中,其质量指标值落入区间的频率分别为0.04,,054,0.42,因此 P(X=-2)=0.04, P(X=2)=0.54, P(X=4)=0.42,即X的分布

13、列为X的数学期望值EX=20.04+20.54+40.42=2.682012-18(1)当时, 当时, 得: (2)(i)可取, 的分布列为 (ii)购进17枝时,当天的利润为 得:应购进17枝2013-20解:(1)记A1表示事件“第2局结果为甲胜”,A2表示事件“第3局甲参加比赛时,结果为甲负”,A表示事件“第4局甲当裁判”则AA1A2.P(A)P(A1A2)P(A1)P(A2).(2)X的可能取值为0,1,2.记A3表示事件“第3局乙和丙比赛时,结果为乙胜丙”,B1表示事件“第1局结果为乙胜丙”,B2表示事件“第2局乙和甲比赛时,结果为乙胜甲”,B3表示事件“第3局乙参加比赛时,结果为乙

14、负”则P(X0)P(B1B2A3)P(B1)P(B2)P(A3),P(X2)P(B3)P()P(B3),P(X1)1P(X0)P(X2),EX0P(X0)1P(X1)2P(X2).2014-18【测量目标】考查平均数和方差及正态分布【考查方式】给出频率分布直方图求平均数和方差,利用正态分布求概率.【试题解析】(1)抽取产品的质量指标值的样本平均数和样本方差分别为:平均数1700.021800.091900.222000.332100.242200.082300.02200.0.020.090.2200.330.240.080.02150.(2)(i)由(1)知,ZN(200,150),从而P(

15、187.8Z212.2)P(20012.2Z20012.2)0.682 6.(ii)由(i)知,一件产品的质量指标值位于区间(187.8,212.2)的概率为0.682 6,依题意知XB(100,0.682 6),所以EX1000.682 668.26.【难易程度】中等题2015-19(I)由散点图可以判断,作为年销售量y关于年宣传费x的回归方程类型 2分 (II)令,先建立y关于w的线性回归方程。由于 ,。所以y关于w的回归方程为,因此y关于x的回归方程为。 6分 (III)(i)由(II)知,当x=49时,年销售量y的预报值 年利润z的预报值。 9分 (ii)根据(II)的结果知,年利润z

16、的预报值 所以当,即x=46.24时,取得最大值 故年宣传费为46.24千元时,年利润的预报值最大。 12分2016-19(I)这100台机器更换的易损零件数为8,9,10,11时的频率为分别为,故1台机器更换的易损零件数为8,9,10,11时发生的概率分别为,每台机器更换与否相互独立,故两台机器更换易损零件个数及对应概率如下表:8()9()10()11()8()16()17()18()19()9()17()18()19()20()10()18()19()20()21()11()19()20()21()22()所以求的分布列为:16171819202122(II),所以的最小值为19(III)故至少购买19件,若买19件时费用期望为(元),若买20件时费用期望为(元)所以应选用.【试题评析】本题以实际问题为背景,以频率作为概率,综合考察柱状图(初中内容),列举法求概率,离散型随机变量的分布列,期望。审题较为费劲,特别是第三问带有创新性与平时训练题型不同,不冷静分析难以找到突破口。属于必考题,偏难.2017-19(1)由题意可得,X满足二项分布,因此可得(2)由(1)可得,属于小概率事件,故而如果出现的零件,需要进行检查。由题意可得,故而在范围外存在9.22这一个数据,因此需要进行检查。此时:,。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服