ImageVerifierCode 换一换
格式:DOC , 页数:10 ,大小:300.04KB ,
资源ID:1283643      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/1283643.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【1587****927】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【1587****927】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(统计学常用公式.doc)为本站上传会员【1587****927】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

统计学常用公式.doc

1、公式一1. 众数【MODE】(1) 未分组数据或单变量值分组数据众数的计算未分组数据或单变量值分组数据的众数就是出现次数最多的变量值。(2) 组距分组数据众数的计算对于组距分组数据,先找出出现次数最多的变量值所在组,即为众数所在组,再根据下面的公式计算计算众数的近似值。 下限公式: 式中:表示众数;L表示众数的下线;表示众数组次数与上一组次数之差;表示众数组次数与下一组次数之差;表示众数组的组距。 上限公式: 式中:U表示众数组的上限。2中位数【MEDIAN】(1)未分组数据中中位数的计算 根据未分组数据计算中位数时,要先对数据进行排序,然后确定中位数的位置。设一组数据按从小到大排序后为,中位

2、数,为则有: 当N为奇数 当N为偶数(2)分组数据中位数的计算分组数据中位数的计算时,要先根据公式N / 2 确定中位数的位置,并确定中位数所在的组,然后采用下面的公式计算中位数的近似值: 式中:表示中位数;L表示中位数所在组的下限;表示中位数所在组以下各组的累计次数;表示中位数所在组的次数;表示中位数所在组的组距。3均值的计算【AVERAGE】(1)未经分组均值的计算未经分组数据均值的计算公式为: (2)分组数据均值计算分组数据均值的计算公式为: 4几何平均数【GEOMEAN】几何平均数是N个变量值乘积的N次方根,计算公式为:式中:G表示几何平均数;表示连乘符号。5调和平均数【HARMEAN

3、】调和平均数是对变量的倒数求平均,然后再取倒数而得到的平均数,它有简单调和平均数与加权调和平均数两种计算形式。简单调和平均数: 加权调和平均数: 式中:H表示调和平均数。6极差【Range】极差也称全距,是一组数据的最大值与最小值之差,即 式中:R表示极差;和分别表示一组数据的最大值与最小值。7平均差【Mean Deviation】平均差是各标志值与其平均数的绝对离差的算术平均。(1) 根据未分组资料的计算公式: (2) 根据分组资料的计算公式: 式中:AD表示平均差8方差【Variance】和标准差【Standard Deviation】方差是各变量值与其均值离差平方的平均数。要求掌握方差和

4、标准差的计算方法。未分组数据方差的计算公式为: 分组数据方差的计算公式为: 式中:表示方差。方差的平方根即为标准差,其相应的计算公式为:未分组数据: 分组数据: 式中:表示标准差。9离散系数离散系数通常是就标准差来计算的,因此,也称为标准差系数,它是一组数据的标准差与其相应的均值之比,是测度数据离散程度的相对指标。 其计算公式为: 式中:表示离散系数。10偏态【SKEW】 偏态是对分布偏斜方向及程度的测度。利用众数、中位数和均值之间的关系就可以判断分布是左偏还是右偏。显然,判别偏态的方向并不困难,但要测度偏斜的程度就需要计算偏态系数了。EXCEL中偏态系数的计算公式为: 11峰值【KURT】E

5、XCEL中峰值系数的计算公式为:式中:s 表示样本标准差。公式二1 均值估计(1)样本均值的标准差样本均值的标准差,即为样本均值的标准误差,又称为样本均值的抽样平均误差,它反映的是所有可能样本的均值与总体均值的平均差异程度,反映了所有可能样本的实际抽样误差水平。样本均值的抽样平均误差计算公式为:重复抽样方式: 不重复抽样方式: 通常情况下,当N很大时,(N-1)几乎等于N,样本均值的抽样平均误差的计算公式也可简化为:在公式中,是总体标准差。但实际计算时,所研究总体的标准差通常是未知的,在大样本的情况下,通常用样本标准差S代替。(2)大样本均值的极限误差 (3)大样本下总体均值的区间估计总体均值

6、的置信度为()的置信区间: 即(4)总体方差未知,小样本正态总体均值的区间估计总体均值的置信度为()的置信区间:即 2比例估计(1)样本比例的抽样平均误差样本比例的抽样平均误差为:重复抽样下: 上式中,p应为总体比例,实际计算时通常用样本比例p代替。不重复抽样下: (2)样本比例的抽样极限误差(3)总体比率的区间估计总体比例P的置信度为()的置信区间为:即 3 总体均值检验(1) 单一总体均值检验正态总体(总体方差已知)或大样本均值检验检验统计量Z为: 正态总体(总体方差未知)小样本均值检验检验统计量t为: (2) 两个总体的均值检验两个正态总体均值检验两个总体方差已知或大样本Z检验统计量为:

7、大样本下对两个总体均值进行检验时,在总体标准差未知的情况下,可用样本标准差代替总体标准差进行计算,检验统计量不变。 两个正态总体均值检验(小样本)两个总体方差未知但相等T检验统计量为: 其中: ; 4 总体比例检验(1) 单一总体的比例检验Z检验统计量: (2) 两个总体比例的检验检验的统计量为: 其中:,为当时和的联合估计值。5 总体方差假设检验(1) 单一正态总体方差的假设检验检验统计量为: 其中:为的估计量。(2) 两个正态总体的方差假设检验检验统计量为: 其中: ; 。公式三1.单因素方差分析设总体共分为k种处理进行观察,第j种处理试验了容量为的样本。(1) 计算各项离差平方和 在单因

8、素方差分析中,需要计算的离差平方和有3个,它们分别是总离差平方和,误差项离差平方和以及水平项离差平方和。 总离差平方和,用SST(Sum of Squares for Total )代表: 式中:表示全部样本观测值的总均值。其计算公式为: 误差离差平方和,用SSE(Sum of Squares for Error)代表: 式中:表示第j种水平的样本均值,水平项离差平方和。为了后面叙述方便,可以把单因素方差分析中的因素称为A。于是水平项离差平方和可以用SSA(Sum of Squares for Factor A)表示。SSA的计算公式为: (2) 计算平均平方用离差平方和除以自由度即可得到平均

9、平方和(Mean Square)。对SST来说,其自由度为(n-1);对SSA来说,其自由度为(r-1),这里r表示水平的个数;对SSE来说,其自由度为(n-r)。与离差平方和一样,SST、SSA、SSE之间的自由度也存在着如下的关系:n-1=(r-1)+(n-r)对于SSA,其平均平方MSA(组间均方差)为: 对于SSE,其平均平方MSE(组内均方差)为: (3) 检验统计量F 2两因素方差分析设两个因素A、B分别有k个水平和n个水平,共进行nk次试验。(1) 计算各项离差平方和在两因素方差分析中,需要计算的离差平方和有4个,它们分别是总离差平方和,误差项离差平方和以及水平A、B项离差平方和

10、。总离差平方和,用SST(Sum of Squares for Total)代表: 式中:表示全部样本观察值的总均值,其计算公式为: 水平项离差平方和可以分别用SSA(Sum of Squares for Factor A)和SSB(Sum of Squares for Factor B)表示。SSA的计算公式为: 式中: SSB的计算公式为: 式中: 误差离差平方和,用SSE(Sum of Squares for Error)代表: (2) 计算平均平方用离差平方和除以自由度即可得到平均平方和(Mean Square)。对SST来说,其自由度为(nk-1);对SSA来说,其自由度为(k-1),这里k表示水平A的个数;对SSB来说,其自由度为(n-1),这里n表示水平B的个数;对SSE来说,其自由度为(n-1)(k-1)。这样,把各项离差平方和除以各自的自由度,即得到平均的离差平方和,简称为均方: (3) 检验统计量F 公式四1拟合优度的检验统计量: 式中:表示类别i的观察频数;表示假设为真时,类别i的期望频数;k表示类别总数。注意:当所有种类的期望频数均大于或等于5时,检验统计量服从自由度为(k-1)的分布。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服