ImageVerifierCode 换一换
格式:DOC , 页数:13 ,大小:1.07MB ,
资源ID:12807304      下载积分:12.58 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/12807304.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(陕西省西安市东仪中学2026届数学高一第一学期期末预测试题含解析.doc)为本站上传会员【cg****1】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

陕西省西安市东仪中学2026届数学高一第一学期期末预测试题含解析.doc

1、陕西省西安市东仪中学2026届数学高一第一学期期末预测试题 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.已知三条直线,,的斜率分别为,,,倾斜角分别为.若,则下列关系不可能成立的是() A. B. C. D. 2.半径

2、为的半圆卷成一个圆锥,则它的体积为() A. B. C. D. 3.若,,若,则a的取值集合为( ) A. B. C. D. 4.已知直线:与直线:,则() A.,平行 B.,垂直 C.,关于轴对称 D.,关于轴对称 5.已知函数的值域为,那么实数的取值范围是( ) A. B.[-1,2) C.(0,2) D. 6.的值是 A. B. C. D. 7.已知集合,则() A.0或1 B. C. D.或 8.已知三个函数,,的零点依次为、、,则 A. B. C. D. 9.已知为平面,为直线,下列命题正确的是 A.,若,则 B.,则 C.

3、则 D.,则 10.函数的定义域为() A.(-∞,2) B.(-∞,2] C. D. 二、填空题:本大题共6小题,每小题5分,共30分。 11.的值为_______ 12.______. 13. “”是“ ”的______条件(请从“充分不必要”,“必要不充分”,“充要”,“既不充分也不必要”中选择一个填) 14.若,,则________. 15.函数,在区间上增数,则实数t的取值范围是________. 16.某扇形的圆心角为2弧度,周长为4cm,则该扇形面积为_____cm2 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 1

4、7.大西洋鲑鱼每年都要逆流而上,游回产地产卵,研究鲑鱼的科学家发现鲑鱼的游速(单位:)与其耗氧量单位数之间的关系可以表示为函数,其中为常数,已知一条鲑鱼在静止时的耗氧量为100个单位;而当它的游速为时,其耗氧量为2700个单位. (1)求出游速与其耗氧量单位数之间的函数解析式; (2)求当一条鲑鱼的游速不高于时,其耗氧量至多需要多少个单位? 18.设直线与相交于一点. (1)求点的坐标; (2)求经过点,且垂直于直线的直线的方程. 19.已知函数(且),再从条件①、条件②这两个条件中选择一个作为已知. (1)判断函数的奇偶性,说明理由; (2)判断函数在上的单调性,并用单调性定

5、义证明; (3)若不大于,直接写出实数m的取值范围. 条件①:,;条件②:,. 注:如果选择条件①和条件②分别解答,按第一个解答计分. 20.已知线段的端点的坐标为,端点在圆上运动. (1)求线段中点的轨迹的方程; (2)若一光线从点射出,经轴反射后,与轨迹相切,求反射光线所在的直线方程. 21.已知函数 (1)求不等式的解集; (2)将图像上所有点的横坐标缩短为原来的(纵坐标不变),再将所得图像向右平移个单位长度,得到函数的图像.求在区间上的值域 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1

6、D 【解析】根据直线的斜率与倾斜角的关系即可求解. 【详解】解:由题意,根据直线的斜率与倾斜角的关系有: 当或时,或,故选项B可能成立; 当时,,故选项A可能成立; 当时,,故选项C可能成立; 所以选项D不可能成立. 故选:D. 2、A 【解析】根据题意可得圆锥母线长为,底面圆的半径为,求出圆锥高即可求出体积. 【详解】半径为半圆卷成一个圆锥,可得圆锥母线长为,底面圆周长为, 所以底面圆的半径为,圆锥的高为, 所以圆锥的体积为. 故选:A. 3、B 【解析】或,分类求解,根据可求得的取值集合 【详解】或, ,, 或或,解得或,综上, 故选: 4、D

7、解析】根据题意,可知两条直线都经过轴上的同一点,且两条直线的斜率互为相反数,即可得两条直线的对称关系. 【详解】因为,都经过轴上的点,且斜率互为相反数, 所以,关于轴对称. 故选:D 【点睛】本题考查了两条直线的位置关系,关于轴对称的直线方程特征,属于基础题. 5、B 【解析】先求出函数的值域,而的值域为,进而得,由此可求出的取值范围. 【详解】解:因为函数的值域为,而的值域为, 所以,解得, 故选:B 【点睛】此题考查由分段函数的值域求参数的取值范围,分段函数的值域等于各段上的函数的值域的并集是解此题的关键,属于基础题. 6、B 【解析】利用诱导公式求解. 【详解

8、解:由诱导公式得, 故选:B. 7、D 【解析】由集合的概念可知方程只有一个解,且解为,分为二次项系数为0和不为0两种情形,即可得结果. 【详解】因为为单元素集,所以方程只有一个解,且解为, 当时,,此时; 当时,,即,此时, 故选:D. 8、C 【解析】令,得出,令,得出,由于函数与的图象关于直线对称,且直线与直线垂直,利用对称性可求出的值,利用代数法求出函数的零点的值,即可求出的值. 【详解】令,得出,令,得出, 则函数与函数、交点的横坐标分别为、. 函数与的图象关于直线对称,且直线与直线垂直, 如下图所示: 联立,得,则点, 由图象可知,直线与函数、的

9、交点关于点对称,则, 由题意得,解得,因此,. 故选:C. 【点睛】本题考查函数的零点之和的求解,充分利用同底数的对数函数与指数函数互为反函数这一性质,结合图象的对称性求解,考查数形结合思想的应用,属于中等题. 9、D 【解析】选项直线有可能在平面内;选项需要直线在平面内才成立;选项两条直线可能异面、平行或相交.选项符合面面平行的判定定理,故正确. 10、D 【解析】利用根式、分式的性质列不等式组求定义域即可. 【详解】由题设,,可得, 所以函数定义域为. 故选:D 二、填空题:本大题共6小题,每小题5分,共30分。 11、 【解析】直接按照诱导公式转化计算即可

10、 【详解】tan300°=tan(300°﹣360°)=tan(﹣60°)=﹣tan60°= 故答案为: 【点睛】本题考查诱导公式的应用:求值.一般采用“大角化小角,负角化正角”的思路进行转化 12、 【解析】首先利用乘法将五进制化为十进制,再利用“倒序取余法”将十进制化为二进制即可. 【详解】, 根据十进制化为二进制“倒序取余法”如下: 可得. 故答案为: 【点睛】本题考查了进位制的转化,在求解过程中,一般都是先把其它进制转化为十进制,再用倒序取余法转化为其它进制,属于基础题. 13、必要不充分 【解析】根据充分条件、必要条件的定义结合余弦函数的性质可得答案. 【

11、详解】当时,可得 由,不能得到 例如:取时,,也满足 所以由,可得成立,反之不成立 “”是“ ”的必要不充分条件 故答案为:必要不充分 14、 【解析】,然后可算出的值,然后可得答案. 【详解】因为,, 所以,所以, 所以,,因为,所以, 故答案为: 15、 【解析】作出函数的图象,数形结合可得结果. 【详解】解:函数的图像如图. 由图像可知要使函数是区间上的增函数, 则. 故答案为 【点睛】本题考查函数的单调性,考查函数的图象的应用,考查数形结合思想,属于简单题目. 16、1 【解析】设该扇形的半径为,根据题意,因为扇形的圆心角为弧度,周长为,则有

12、故答案为. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(1),;(2)24300 【解析】:(1)由,可得,. (2)由题,解得:,故其耗氧量至多需要24300个单位. 试题解析:(1)由题意,得, 解得:,. ∴游速与其耗氧量单位数之间的函数解析式为. (2)由题意,有,即, ∴ 由对数函数的单调性,有,解得:, ∴当一条鲑鱼的游速不高于时,其耗氧量至多需要24300个单位. 点晴:解决函数模型应用的解答题 18、(1);(2). 【解析】(1)将两直线方程联立,求出方程组的公共解,即可得出点的坐标; (2)

13、求出直线的斜率,可得出垂线的斜率,然后利用点斜式方程可得出所求直线的方程,化为一般式即可. 【详解】(1)由,解得,因此,点的坐标为; (2)直线斜率为,垂直于直线的直线斜率为, 则过点且垂直于直线的直线的方程为, 即:. 【点睛】本题两直线交点坐标计算,同时也考查了直线的垂线方程的求解,解题时要将两直线的垂直关系转化为斜率关系,考查计算能力,属于基础题. 19、(1)答案见解析 (2)答案见解析(3)答案见解析 【解析】(1)定义域均为,代入化简可得出与的关系,从而判断奇偶性;(2)利用定义任取,且,作差判断的正负,可得出单调性;(3)根据奇偶性和单调性可得到与2的不等关系,

14、求解可得的范围. 【小问1详解】 解:选择条件①:. 函数是偶函数,理由如下: 的定义域为,对任意,则. 因为, 所以函数是偶函数. 选择条件②:. 函数是奇函数,理由如下: 的定义域为,对任意,则. 因为, 所以函数是奇函数. 【小问2详解】 选择条件①:. 在上是增函数. 任取,且,则. 因为, 所以. 所以 ,即 所以在上是增函数. 选择条件②:. 在上减函数. 任取,且. 因为, 所以. 所以 ,即 所以在上是减函数. 【小问3详解】 选择条件①:. 实数的取值范围是. 选择条件②:. 实数的取值范围是. 20、

15、1) (2) , 【解析】(1)设,利用中点坐标公式,转化为的坐标,代入圆的方程求解即可 (2)设关于轴对称点设过的直线,利用点到直线的距离公式化简求解即可 【详解】设, 则代入 轨迹的方程为 (2)设关于轴对称点 设过的直线,即 ∵,, ∴或 ∴反射光线所在即 即 21、(1),. (2). 【解析】(1)利用辅助角公式化简函数的解析式,根据正弦函数的性质可求得答案; (2)根据函数的图象变换得到函数的解析式,再由正弦函数的性质可求得的值域. 【小问1详解】 解:因为,∴,即, 所以,即,, ∴的解集为, 【小问2详解】 解:由题可知, 当时,,所以,所以, 所以在区间上值域为

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服