ImageVerifierCode 换一换
格式:DOC , 页数:12 ,大小:471.50KB ,
资源ID:12801883      下载积分:12.58 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/12801883.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(2025年陕西省商洛中学高一数学第一学期期末监测模拟试题含解析.doc)为本站上传会员【y****6】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2025年陕西省商洛中学高一数学第一学期期末监测模拟试题含解析.doc

1、2025年陕西省商洛中学高一数学第一学期期末监测模拟试题 注意事项: 1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。 2.答题时请按要求用笔。 3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。 4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。 5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.函数的定义域为( ) A. B.

2、 C. D. 2.二次函数中,,则函数的零点个数是 A.个 B.个 C.个 D.无法确定 3.下列函数中,既是偶函数,又在区间上单调递增的函数为 A. B. C. D. 4.如图,质点在单位圆周上逆时针运动,其初始位置为,角速度为2,则点到轴距离关于时间的函数图象大致为() A. B. C. D. 5.已知函数,则() A.3 B.2 C.1 D.0 6.函数的定义域是 A.(-1,2] B.[-1,2] C.(-1 ,2) D.[-1,2) 7.函数图象一定过点 A.( 0,1) B.(1,0) C.(0,3) D.(3,0) 8.数学可以刻画现实世

3、界中的和谐美,人体结构、建筑物、国旗、绘画、优选法等美的共性与黄金分割相关.黄金分割常数也可以表示成,则() A. B. C. D. 9.下列命题中正确的是() A.若,则 B.若,则 C.若,则 D.若,则 10.我国在文昌航天发射场用长征五号运载火箭成功发射探月工程端娥五号探测器,顺利将探测器送入预定轨道,经过两次轨道修正,嫦娥五号顺利进入环月轨道飞行,嫦娥五号从椭圆形环月轨道变为近圆形环月轨道,若这时把近圆形环月轨道看作圆形轨道,嫦娥五号距离月表400千米,已知月球半径约为1738千米,则嫦娥五号绕月每旋转弧度,飞过的路程约为()() A.1069千米 B.1119千米

4、C.2138千米 D.2238千米 二、填空题:本大题共6小题,每小题5分,共30分。 11.已知函数,则的值是________ 12.如图,直四棱柱的底面是边长为1的正方形,侧棱长,则异面直线与的夹角大小等于______ 13.函数的值域是__________. 14.已知函数,则______. 15.函数的定义域为___ 16.______. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.设函数的定义域为,值域为,如果存在函数,使得函数的值域仍是,那么称是函数的一个等值域变换. (1)判断下列函数是不是函数的一个等值域变换?

5、说明你的理由; ①; ②. (2)设的定义域为,已知是的一个等值域变换,且函数的定义域为,求实数的值. 18.已知的三个顶点是,直线过点且与边所在直线平行. (1)求直线的方程; (2)求的面积. 19.在体育知识有奖问答竞赛中,甲、乙、丙三人同时回答一道有关篮球知识的问题,已知甲答题正确的概率是,乙答题错误的概率是,乙、丙两人都答题正确的概率是,假设每人答题正确与否是相互独立的 (1)求丙答题正确的概率; (2)求甲、丙都答题错误,且乙答题正确的概率 20.定义在上的函数,如果满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称为函数的上界,已知函数. (1)当

6、时,求函数在上的值域,并判断函数在上是否为有界函数,请说明理由; (2)若函数在上是以4为上界的有界函数,求实数的取值范围. 21.求解下列问题: (1)角的终边经过点,且,求的值 (2)已知,,求的值 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、B 【解析】根据函数的解析式有意义,列出不等式,即可求解. 【详解】由题意,函数有意义,则满足,解得且, 所以函数的定义域为. 故选:B. 2、C 【解析】计算得出的符号,由此可得出结论. 【详解】由已知条件可得,因此,函数的零点个数为.

7、故选:C. 3、C 【解析】选项A中,函数的定义域为,不合题意,故A不正确; 选项B中,函数的定义域为,无奇偶性,故B不正确; 选项C中,函数为偶函数,且当x>0时,,为增函数,故C正确; 选项D中,函数为偶函数,但在不是增函数,故D不正确 选C 4、A 【解析】利用角速度先求出时,的值,然后利用单调性进行判断即可 【详解】因为, 所以由,得,此时,所以排除CD, 当时,越来越小,单调递减,所以排除B, 故选:A 5、B 【解析】先求值,再计算即可. 【详解】, , 故选:B 点睛】本题主要考查了分段函数求函数值,属于基础题. 6、A 【解析】根据二次根

8、式的性质求出函数的定义域即可 【详解】由题意得: 解得:﹣1<x≤2, 故函数的定义域是(﹣1,2], 故选A 【点睛】本题考查了求函数的定义域问题,考查二次根式的性质,是一道基础题.常见的求定义域的类型有:对数,要求真数大于0即可;偶次根式,要求被开方数大于等于0;分式,要求分母不等于0,零次幂,要求底数不为0;多项式要求每一部分的定义域取交集. 7、C 【解析】根据过定点,可得函数过定点. 【详解】因为在函数中, 当时,恒有 , 函数的图象一定经过点,故选C. 【点睛】本题主要考查指数函数的几何性质,属于简单题.函数图象过定点问题主要有两种类型:(1)指数型,主要借助

9、过定点解答;(2)对数型:主要借助过定点解答. 8、A 【解析】利用同角三角函数平方关系,诱导公式,二倍角公式进行求解. 【详解】 故选:A 9、C 【解析】利用不等式性质逐一判断即可. 【详解】选项A中,若,,则,若,,则,故错误; 选项B中,取,满足,但,故错误; 选项C中,若,则两边平方即得,故正确; 选项D中,取,满足,但,故错误. 故选:C. 【点睛】本题考查了利用不等式性质判断大小,属于基础题. 10、D 【解析】利用弧长公式直接求解. 【详解】嫦娥五号绕月飞行半径为400+1738=2138, 所以嫦娥五号绕月每旋转弧度,飞过的路程约为(千米).

10、 故选:D 二、填空题:本大题共6小题,每小题5分,共30分。 11、-1 【解析】利用分段函数的解析式,代入即可求解. 【详解】解:因为, 则. 故答案为:-1 12、 【解析】由直四棱柱的底面是边长为1的正方形,侧棱长可得 由 知就是异面直线与的夹角,且 所以=60°,即异面直线与的夹角大小等于60°. 考点:1正四棱柱;2异面直线所成角 13、 【解析】首先换元,再利用三角变换,将函数转化为关于二次函数,再求值域. 【详解】设,因为,所以, 则, , 当时,函数取得最小值,当时,函数取得最大值, 所以函数的值域是 故答案为: 14、2 【解析】根

11、据自变量的范围,由内至外逐层求值可解. 【详解】 又 故答案为:2. 15、 【解析】解不等式组即得解. 【详解】解:由题得且, 所以函数的定义域为. 故答案为: 16、2 【解析】利用两角和的正切公式进行化简求值. 【详解】由于, 所以, 即, 所以 故答案为: 【点睛】本小题主要考查两角和的正切公式,属于中档题. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(1)①不是等值域变换,②是等值域变换; (2). 【解析】(1)运用对数函数的值域和基本不等式,结合新定义即可判断①;运用二次函数的值域

12、和指数函数的值域,结合新定义即可判断②; (2)利用f(x)的定义域,求得值域,根据x的表达式,和t值域建立不等式,利用存在t1,t2∈R使两个等号分别成立,求得m和n 试题解析: (1)①,x>0,值域为R, ,t>0,由g(t)⩾2可得y=f[g(t)]的值域为[1,+∞). 则x=g(t)不是函数y=f(x)的一个等值域变换; ② ,即的值域为, 当时,,即的值域仍为,所以是的一个等值域变换,故①不是等值域变换,②是等值域变换; (2)定义域为,因为是的一个等值域变换,且函数的定义域为,的值域为, , 恒有,解得 18、 (1) (2) 【解析】(1)利用线线

13、平行得到直线的斜率,由点斜式得直线方程;(2)利用点点距求得,利用点线距求得三角形的高,从而得到的面积. 试题解析: (1)由题意可知:直线的斜率为:, ∵,直线的斜率为-2, ∴直线的方程为:,即. (2)∵, 点到直线的距离等于点到直线的距离,∴, ∴的面积. 19、(1) (2) 【解析】(1)设丙答对这道题的概率为,利用对立事件和相互独立事件概率公式,即可求解; (2)由相互独立事件概率乘法公式,即可求解. 【小问1详解】 记甲、乙、丙3人独自答对这道题分别为事件, 设丙答对题的概率,乙答对题的概率, 由于每人回答问题正确与否是相互独立的,因此是相互独立事

14、件. 根据相互独立事件同时发生的概率公式,得,解得, 所以丙对这道题的概率为 【小问2详解】 甲、丙都答题错误,且乙答题正确的概率为甲、乙、丙三人都回答错误的概率为 20、(1)值域为,不是有界函数;(2) 【解析】(1)把代入函数的表达式,得出函数的单调区间,结合有界函数的定义进行判断;(2)由题意知,对恒成立,令,对恒成立,设,,求出单调区间,得到函数的最值,从而求出的值. 试题解析:(1)当时,,令,∵,∴,;∵在上单调递增,∴,即在上的值域为,故不存在常数,使成立.∴函数在上不是有界函数 (2)由题意知,对恒成立,即:,令,∵,∴.∴对恒成立,∴,设,,由,由于在上递增,在上递减,在上的最大值为,在上的最小值为,∴实数的取值范围为 21、(1)或 (2) 【解析】(1)结合三角函数的定义求得,由此求得. (2)通过平方的方法求得,由此求得. 【小问1详解】 依题意或. 所以或, 所以或. 【小问2详解】 由于,所以, , 由于,所以,,, 所以, 所以, 所以,, 所以

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服