ImageVerifierCode 换一换
格式:DOC , 页数:13 ,大小:554.50KB ,
资源ID:12801179      下载积分:12.58 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/12801179.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(新疆生产建设兵团一师高级中学2025年数学高一上期末统考模拟试题含解析.doc)为本站上传会员【y****6】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

新疆生产建设兵团一师高级中学2025年数学高一上期末统考模拟试题含解析.doc

1、新疆生产建设兵团一师高级中学2025年数学高一上期末统考模拟试题 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.已知集合,集合,则下列结论正确的是 A. B. C. D. 2.已知函数y=a+sin bx(b>0且b≠1

2、)的图象如图所示,那么函数y=logb(x-a)的图象可能是(  ) A. B. C. D. 3.中,设,,为中点,则 A. B. C. D. 4.刘徽(约公元225年—295年),魏晋期间伟大的数学家,中国古典数学理论的奠基人之一.他在割圆术中提出的“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,这可视为中国古代极限观念的佳作,割圆术的核心思想是将一个圆的内接正边形等分成个等腰三角形(如图所示),当变得很大时,这n个等腰三角形的面积之和近似等于圆的面积,运用割圆术的思想,可以得到的近似值为() A. B. C. D. 5.设,,,则,,的大小

3、关系是() A. B. C. D. 6.若方程则其解得个数为() A.3 B.4 C.6 D.5 7.函数(,且)的图象恒过定点,且点在角的终边上,则( ) A. B. C. D. 8.设,则“”是“”的 A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 9.函数在区间上的最小值为() A. B. C. D. 10.已知,则等于() A.1 B.2 C.3 D.6 二、填空题:本大题共6小题,每小题5分,共30分。 11.函数的最小正周期为,且.当时,则函数的对称中心__________;若,则值为_________

4、 12.写出一个满足,且的函数的解析式__________ 13.已知,,则____________ 14.已知奇函数满足,,若当时,,则______ 15.若,则的最小值为__________. 16.在某高传染性病毒流行期间,为了建立指标显示疫情已受控制,以便向该地区居民显示可以过正常生活,有公共卫生专家建议的指标是“连续7天每天新增感染人数不超过5人”,根据连续7天的新增病例数计算,下列各个选项中,一定符合上述指标的是__________(填写序号) ①平均数;②标准差;③平均数且极差小于或等于2; ④平均数且标准差;⑤众数等于1且极差小于或等于4 三、解答题:本大题

5、共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.设函数,. (1)若方程在区间上有解,求a的取值范围. (2)设,若对任意的,都有,求a的取值范围. 18.设函数. (1)求关于的不等式的解集; (2)若是偶函数,且,,,求的取值范围. 19.某篮球队在本赛季已结束的8场比赛中,队员甲得分统计的茎叶图如下: (1)求甲在比赛中得分的平均数和方差; (2)从甲比赛得分在20分以下6场比赛中随机抽取2场进行失误分析,求抽到2场都不超过平均数的概率 20.某企业生产A,B两种产品,根据市场调查与预测,A产品的利润y与投资x成正比,其关系如图(1)所示;B

6、产品的利润y与投资x的算术平方根成正比,其关系如图(2)所示(注:利润y与投资x的单位均为万元) (1)分别求A,B两种产品的利润y关于投资x的函数解析式; (2)已知该企业已筹集到200万元资金,并将全部投入A,B两种产品的生产 ①若将200万元资金平均投入两种产品的生产,可获得总利润多少万元? ②如果你是厂长,怎样分配这200万元资金,可使该企业获得总利润最大?其最大利润为多少万元? 21.已知函数 (1)若是偶函数,求a值; (2)若对任意,不等式恒成立,求a的取值范围 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰

7、有一项是符合题目要求的 1、B 【解析】由题意得,结合各选项知B正确.选B 2、C 【解析】由三角函数的图象可得a>1,且最小正周期T=<π,所以b>2,则y=logb(x-a)是增函数,排除A和B;当x=2时,y=logb(2-a)<0,排除D,故选C. 3、C 【解析】分析:直接利用向量的三角形法则求. 详解:由题得, 故答案为C. 点睛:(1)本题主要考查向量的加法和减法法则,意在考查学生对这些基础知识的掌握水平和转化能力.(2)向量的加法法则:,向量的减法法则:. 4、B 【解析】将一个圆的内接正边形等分成个等腰三角形;根据题意,可知个等腰三角形的面积和近似等于圆

8、的面积,从而可求的近似值. 【详解】将一个圆的内接正边形等分成个等腰三角形,设圆的半径为, 则,即,所以. 故选:B. 5、A 【解析】根据指数函数与对数函数的图像与性质,结合中间量法,即可比较大小. 【详解】由指数函数与对数函数的图像与性质可知 综上可知,大小关系为 故选:A 【点睛】本题考查了指数函数与对数函数的图像与性质的应用,中间值法是比较大小常用方法,属于基础题. 6、C 【解析】分别画出和的图像,即可得出. 【详解】方程,即, 令,,易知它们都是偶函数,分别画出它们的图像, 由图可知它们有个交点. 故选:. 【点睛】本题主要考查的是函

9、数零点,利用数型结合是解决本题的关键,同时考查偶函数的性质,是中档题. 7、D 【解析】根据对数型函数恒过定点得到定点,再根据点在角的终边上,由三角函数的定义得,即可得到答案. 【详解】由于函数(,且)的图象恒过定点,则,点,点在角的终边上,. 故选:D. 8、D 【解析】若,则,故不充分;若,则,而,故不必要,故选D. 考点:本小题主要考查不等式的性质,熟练不等式的性质是解答好本类题目的关键. 9、C 【解析】求出函数的对称轴,判断函数在区间上的单调性,根据单调性即可求解. 【详解】,对称轴,开口向上, 所以函数在上单调递减,在单调递增, 所以. 故选:C 10、

10、A 【解析】利用对数和指数互化,可得,,再利用即可求解. 【详解】由得:,, 所以, 故选:A 二、填空题:本大题共6小题,每小题5分,共30分。 11、 ①. ②. 【解析】根据最小正周期以及关于的方程求解出的值,根据对称中心的公式求解出在上的对称中心;先求解出的值,然后根据角的配凑结合两角差的正弦公式求解出的值. 【详解】因为最小正周期为,所以, 又因为,所以, 所以或, 又因为,所以,所以, 所以, 令,所以, 又因为,所以,所以对称中心为; 因为,,所以, 若,则,不符合, 所以,所以, 所以, 故答案为:;. 12、(答案不唯一

11、 【解析】根据题意可知函数关于对称,写出一个关于对称函数,再检验满足即可. 【详解】由,可知函数关于对称, 所以, 又,满足. 所以函数的解析式为(答案不唯一). 故答案为:(答案不唯一). 13、 【解析】,, 考点:三角恒等变换 14、 【解析】由,可得是以周期为周期函数,由奇函数的性质以及已知区间上的解析式可求值,从而计算求解. 【详解】因为,即是以周期为的周期函数.为奇函数且当时,, ,当时, 所以 故答案为: 15、 【解析】整理代数式满足运用基本不等式结构后,用基本不等式求最小值. 【详解】∵ ∴ 当且仅当,时,取最小值. 故答案为: 【

12、点睛】用基本不等式求最值要注意“一正、二定、三相等”,若不能取等,则要改变求最值的方法. 16、③⑤ 【解析】按照平均数、极差、方差依次分析各序号即可. 【详解】连续7天新增病例数:0,0,0,0,2,6,6,平均数是2<3,①错; 连续7天新增病例数:6,6,6,6,6,6,6,标准差是0<2,②错; 平均数且极差小于或等于2,单日最多增加4人,若有一日增加5人, 其他天最少增加3人,不满足平均数,所以单日最多增加4人,③对; 连续7天新增病例数:0,3,3,3,3,3,6,平均数是3且标准差小于2,④错; 众数等于1且极差小于或等于4,最大数不会超过5,⑤对. 故答案为:

13、③⑤. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(1);(2). 【解析】(1),有解,即在上有解,设,对称轴为,只需,解不等式,即可得出结论; (2)根据题意只需,分类讨论去绝对值求出,利用函数单调性求出或取值范围,转化为求关于的不等式,即可求解. 【详解】(1)在区间上有解, 整理得 在区间上有解, 设,对称轴为, ,解得, 所以a的取值范围.是; (2) 当, ; 当, , , 设是减函数,且在恒成立, 在上是减函数, 在处有意义,, 对任意的,都有, 即, 解得, 的取值范围是. 【点睛

14、本题考查方程零点的分布求参数范围,考查对数函数的图像和性质的综合应用,要注意对数函数的定义域,函数恒成立问题,属于较难题. 18、(1)当时,;当时,;当时, (2) 【解析】(1)分类讨论,解含参一元二次不等式;(2)先根据是偶函数,得到,再,,转化为在上的最小值小于在上的最小值,进行求解. 【小问1详解】 ,令,解得或 当时,,的解集是; 当时,,的解集是; 当时,,的解集是. 【小问2详解】 因为是偶函数,所以,解得:. 设函数,因为在上单调递增,所以. 设函数. 当时,在上单调递增,则, 故,即,结合得:; 当时,在上单调递减,则, 故,即,结合得:

15、 综上,的取值范围为 19、(1)15,3225;(2). 【解析】(1)将数据代入公式,即可求得平均数和方差. (2)6场比赛中得分不超过平均数的有4场,可记为,超过平均数的有2场,可记为,分别求得6场比赛中抽出2场,总事件及满足题意的事件,根据古典概型概率公式,即可得答案. 【详解】解:(1)平均数 方差 (2)由题意得,6场比赛中得分不超过平均数的有4场,可记为 超过平均数的有2场,可记为 记从6场比赛中抽出2场,抽到的2场都不超过平均数为事件A 从6场比赛中抽出2场,共有以下情形: , 共有15个基本事件,事件A包含6个基本事件 所以 20、(1)A产品的利润

16、y关于投资x的函数解析式为:; B产品的利润y关于投资x的函数解析式为:. (2)①万元;②当投入B产品的资金为万元,投入A产品的资金为万元,该企业获得的总利润最大,其最大利润为万元. 【解析】(1)利用待定系数法,结合函数图象上特殊点,运用代入法进行求解即可; (2)①:利用代入法进行求解即可; ②利用换元法,结合二次函数的单调性进行求解即可. 【小问1详解】 因为A产品的利润y与投资x成正比, 所以设,由函数图象可知,当时,, 所以有,所以; 因为B产品的利润y与投资x的算术平方根成正比, 所以设,由函数图象可知:当时,, 所以有,所以; 【小问2详解】 ①:

17、将200万元资金平均投入两种产品的生产, 所以A产品的利润为, B产品的利润为, 所以获得总利润为万元; ②:设投入B产品的资金为万元,则投入A产品的资金为万元, 设企业获得的总利润为万元, 所以,令, 所以, 当时,即当时,有最大值,最大值为, 所以当投入B产品的资金为万元,投入A产品的资金为万元,该企业获得的总利润最大,其最大利润为万元. 21、(1)0 (2) 【解析】(1)由偶函数的定义得出a的值; (2)由分离参数得,利用换元法得出的最小值,即可得出a的取值范围 【小问1详解】 因为是偶函数,所以, 即,故 【小问2详解】 由题意知在上恒成立, 则,又因为,所以, 则.令,则, 可得, 又因为,当且仅当时,等号成立,所以,即a的取值范围是

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服