1、江苏省苏州市新草桥中学2026届数学高一上期末监测模拟试题 注意事项 1.考试结束后,请将本试卷和答题卡一并交回. 2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符. 4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗. 一、选择题:本
2、大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.已知集合0,,1,,则 A. B.1, C.0,1, D. 2.已知函数在上的值域为R,则a的取值范围是 A. B. C. D. 3.若,,,则a,b,c的大小关系为() A. B. C. D. 4.下列结论中正确的个数是() ①命题“所有的四边形都是矩形”是存在量词命题; ②命题“”是全称量词命题; ③命题“”的否定为“”; ④命题“是的必要条件”是真命题; A.0 B.1 C.2 D.3 5.已知直线,平面满足,则直线与直线的位置关系是 A.平行 B.
3、相交或异面 C.异面 D.平行或异面 6.两圆和的位置关系是 A.相离 B.相交 C.内切 D.外切 7. “”是“为锐角”的() A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既非充分又非必要条件 8.如图是一算法的程序框图,若输出结果为,则在判断框中应填入的条件是() A. B. C. D. 9.若函数f(x)=sin(2x+φ)为R上的偶函数,则φ的值可以是( ) A. B. C. D. 10.已知三棱锥D-ABC中,AB=BC=1,AD=2,BD=,AC=,BC⊥AD,则该三棱锥的外接球的表面积为() A.π B.6π C.5π
4、 D.8π 二、填空题:本大题共6小题,每小题5分,共30分。 11.若三棱锥中,,其余各棱长均为5,则三棱锥内切球的表面积为_____ 12.下面四个命题: ①定义域上单调递增; ②若锐角,满足,则; ③是定义在上的偶函数,且在上是增函数,若,则; ④函数的一个对称中心是; 其中真命题的序号为______. 13.已知函数恰有2个零点,则实数m的取值范围是___________. 14.已知函数定义域为,若满足① 在内是单调函数;存在使在上的值域为,那么就称为“半保值函数”,若函数且 是“半保值函数”,则的取值范围为________ 15.若正数,满足,则_______
5、 16.函数的最大值是__________ 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.已知函数,且 求函数的定义域; 求满足的实数x的取值范围 18.已知函数,. (1)设函数,求函数在区间上的值域; (2)定义表示中较小者,设函数. ①求函数的单调区间及最值; ②若关于的方程有两个不同的实根,求实数的取值范围. 19.阅读与探究 人教A版《普通高中课程标准实验教科书数学4(必修)》在第一章小结中写道: 将角放在直角坐标系中讨论不但使角的表示有了统一的方法,而且使我们能够借助直角坐标系中的单位圆,建立角的变化与单位圆上
6、点的变化之间的对应关系,从而用单位圆上点的纵坐标、横坐标来表示圆心角的正弦函数、余弦函数.因此,正弦函数、余弦函数的基本性质与圆的几何性质(主要是对称性)之间存在着非常紧密的联系.例如,和单位圆相关的“勾股定理”与同角三角函数的基本关系有内在的一致性;单位圆周长为与正弦函数、余弦函数的周期为是一致的;圆的各种对称性与三角函数的奇偶性、诱导公式等也是一致的等等.因此,三角函数的研究过程能够很好地体现数形结合思想. 依据上述材料,利用正切线可以讨论研究得出正切函数的性质. 比如:由图1.2-7可知,角的终边落在四个象限时均存在正切线;角的终边落在轴上时,其正切线缩为一个点,值为;角的终边落
7、在轴上时,其正切线不存在;所以正切函数的定义域是. (1)请利用单位圆中的正切线研究得出正切函数的单调性和奇偶性; (2)根据阅读材料中途1.2-7,若角为锐角,求证:. 20.已知函数的最小正周期为4,且满足 (1)求的解析式 (2)是否存在实数满足?若存在,请求出的取值范围;若不存在,请说明理由 21.在底面为平行四边形的四棱锥中,,平面,且,点是的中点 (Ⅰ)求证:; (Ⅱ)求证:平面; 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、A 【解析】直接利用交集的运算法则化简求解即可
8、详解】集合,, 则,故选A 【点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合且属于集合的元素的集合. 2、A 【解析】利用分段函数,通过一次函数以及指数函数判断求解即可 【详解】解:函数在上的值域为R, 当函数的值域不可能是R, 可得, 解得: 故选A 【点睛】本题考查分段函数的应用,函数的最值的求法,属于基础题. 3、A 【解析】根据指数函数和对数函数的单调性进行判断即可. 【详解】∵,∴,∴,,, ∴. 故选:A 4、C 【解析】根据存在量词命题、全称量词命题的概
9、念,命题的否定,必要条件的定义,分析选项,即可得答案. 【详解】对于①:命题“所有的四边形都是矩形”是全称量词命题,故①错误; 对于②:命题“”是全称量词命题;故②正确; 对于③:命题,则,故③错误; 对于④:可以推出,所以是的必要条件,故④正确; 所以正确的命题为②④, 故选:C 5、D 【解析】∵a∥α,∴a与α没有公共点,b⊂α,∴a、b没有公共点, ∴a、b平行或异面 故选D. 6、B 【解析】依题意,圆的圆坐标为,半径为,圆的标准方程为,其圆心坐标为,半径为,两圆心的距离,且两圆相交,故选B. 7、B 【解析】根据充分条件与必要条件的定义判断即可. 【详
10、解】解:因为为锐角,所以,所以,所以“”是“为锐角”的必要条件; 反之,当时,,但是不是锐角,所以“”是“为锐角”的非充分条件. 故“”是“为锐角”必要不充分条件. 故选:B. 【点睛】本题主要考查充分条件与必要条件,与角的余弦在各象限的正负,属于基础题. 8、B 【解析】依次执行循坏结构,验证输出结果即可. 【详解】根据程序框图,运行结构如下: 第一次循环,, 第二次循环,, 第三次循环,, 此时退出循环,故应填:. 故选:B. 9、C 【解析】根据三角函数的奇偶性,即可得出φ的值 【详解】函数f(x)=sin(2x+φ)为R上的偶函数,则φ=+kπ,k∈Z;所
11、以φ的值可以是.故选C. 【点睛】本题考查了三角函数的图象与性质的应用问题,属于基础题 10、B 【解析】由题意结合平面几何、线面垂直的判定与性质可得BC⊥BD,AD⊥AC,再由平面几何的知识即可得该几何体外接球的球心及半径,即可得解. 【详解】 AB=BC=1,AD=2,BD=,AC=, ∴,, ∴DA⊥AB,AB⊥BC,由BC⊥AD 可得BC⊥平面DAB,DA⊥平面ABC, ∴BC⊥BD,AD⊥AC, ∴CD=, 由直角三角形的性质可知,线段CD的中点O到点A,B,C,D的距离均为, ∴该三棱锥外接球的半径为, 故三棱锥的外接球的表面积为4π=6π. 故选:B.
12、 【点睛】本题考查了三棱锥几何特征的应用及其外接球表面积的求解,考查了运算求解能力与空间思维能力,属于中档题. 二、填空题:本大题共6小题,每小题5分,共30分。 11、 【解析】由题意得,易知内切球球心到各面的距离相等, 设为的中点,则在上且为的中点, 在中,, 所以三棱锥内切球的表面积为 12、②③④ 【解析】由正切函数的单调性,可以判断①真假;根据正弦函数的单调性,结合诱导公式,可以判断②的真假;根据函数奇偶性与单调性的综合应用,可以判断③的真假;根据正弦型函数的对称性,我们可以判断④的真假,进而得到答案 【详解】解:由正切函数的单调性可得①“在定义域上单调递增”
13、为假命题; 若锐角、满足,即,即,则,故②为真命题; 若是定义在上的偶函数,且在上是增函数,则函数在上为减函数, 若,则,则,故③为真命题; 由函数则当时,故可得是函数的一个对称中心,故④为真命题; 故答案为:②③④ 【点睛】本题考查的知识点是命题的真假判断与应用,函数单调性的性质,偶函数,正弦函数的对称性,是对函数性质的综合考查,熟练掌握基本初等函数的性质是解答本题的关键 13、 【解析】讨论上的零点情况,结合题设确定上的零点个数,根据二次函数性质求m的范围. 【详解】当时,恒有,此时无零点,则, ∴要使上有2个零点,只需即可, 故有2个零点有; 当时,存在,此时有1
14、个零点,则, ∴要使上有1个零点,只需即可, 故有2个零点有; 综上,要使有2个零点,m的取值范围是. 故答案为:. 14、 【解析】根据半保值函数的定义,将问题转化为与的图象有两个不同的交点,即有两个不同的根,换元后转化为二次方程的实根的分布可解得. 【详解】因为函数且是“半保值函数”,且定义域为, 由时,在上单调递增,在 单调递增, 可得为上的增函数; 同样当时,仍为上的增函数, 在其定义域内为增函数, 因为函数且是“半保值函数”, 所以与的图象有两个不同的交点, 所以有两个不同的根, 即有两个不同的根, 即有两个不同的根, 可令,, 即有有两个不同正
15、数根, 可得,且, 解得. 【点睛】本题考查函数的值域的求法,解题的关键是正确理解“半保值函数”,解题时要认真审题,仔细解答,注意合理地进行等价转化 15、108 【解析】设,反解,结合指数运算和对数运算,即可求得结果. 【详解】可设,则,,; 所以. 故答案为:108. 16、 【解析】由题意得, 令, 则,且 故,, 所以当时,函数取得最大值,且, 即函数的最大值为 答案: 点睛: (1)对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,当其中一个式子的值知道时,其余二式的值可求,转化的公式为(sin α±cos α)2
16、=1±2sin αcos α (2)求形如y=asin xcos x+b(sin x±cos x)+c的函数的最值(或值域)时,可先设t=sin x±cos x,转化为关于t的二次函数求最值(或值域) 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(1);(2)见解析. 【解析】由题意可得,,解不等式可求;由已知可得,结合a的范围,进行分类讨论求解x的范围 【详解】(1)由题意可得,, 解可得,, 函数的定义域为, 由, 可得, 时,, 解可得,, 时,, 解可得, 【点睛】本题主要考查了对数函数的定义域及利用对数函数单
17、调性求解对数不等式,体现了分类讨论思想的应用,属于基础试题 18、 (1);(2)①.答案见解析;②.. 【解析】(1)为上的单调增函数,故值域为.(2)计算得,由此得到的单调性和最值,而有两个不同的根则可转化为与的函数图像有两个不同的交点去考虑. 解析:(1)∵函数在区间上单调递减,函数在区间上单调递增,∴函数在区间上单调递增,故,即,所以函数在区间上的值域为. (2)当时,有,故;当时,,故,故,由(1)知:在区间上单调递增,在区间上单调递减,故,∴函数的单调递增区间为,单调递减区间为.有最大值4,无最小值. ②∵在上单调递减,∴.又在上单调递增,∴.∴要使方程有两个不同的实根,
18、则需满足.即的取值范围是. 点睛:求函数值域,优先函数的单调性,对于形如的函数,其图像是两个图像中的较低者. 19、(1)见解析(2)见解析 【解析】(1)在单位圆中画出角的正切线,观察随增大正切线的值得变化情况,再观察时,正切线的值随增大时的变化情况,发现正切函数在区间上单调递增.(2)当是锐角时,有,由此得到. 解析:(1)当时, 增大时正切线的值越来越大;当时,正切线与区间上的情况完全一样;随着角的终边不停旋转,正切线不停重复出现,故可得出正切函数在区间上单调递增;由题意知正切函数的定义域关于原点对称,在坐标系中画出角 和,它们的终边关于轴对称,在单位圆中作出它们的正切线,可
19、以发现它们的正切线长度相等,方向相反,即,得出正切函数为奇函数. (2)如图,当为锐角时,在单位圆中作出它的正弦线,正切线,又因为,所以,又 ,而,故即. 点睛:三角函数线是研究三角函数性质(如定义域、值域、周期性、奇偶性等)的重要工具,它体现了数形结合的数学思想,是解三角不等式、三角方程等不可或缺的工具. 20、(1) (2)存在; 【解析】(1)因为的最小正周期为4,可求得,再根据满足,可知的图象关于点对称,结合,即可求出的值,进而求出结果; (2)由(1)可得,再根据,在同一坐标系中作出与的大致图象,根据图像并结合的单调性,建立方程,即可求出,由此即可求出结果. 【小问
20、1详解】 解:因为的最小正周期为4,所以 因为满足, 所以的图象关于点对称, 所以, 所以,即, 又,所以 所以的解析式为 【小问2详解】 解:由,可得 当时,, 在同一坐标系中作出与的大致图象,如图所示, 当时,, 再结合的单调性可知点的横坐标即方程的根,解得 结合图象可知存在实数满足,的取值范围是 21、(1)见解析;(2)见解析 【解析】(Ⅰ)由已知得,,从而平面,由此能证明;(Ⅱ)连接与相交于,连接,由已知得,由此能证明平面 试题解析:(Ⅰ)由平面可得AC, 又, 故AC平面PAB,所以. (Ⅱ)连BD交AC于点O,连EO, 则EO是△PDB的中位线,所以EOPB 又因为面,面, 所以PB平面






