ImageVerifierCode 换一换
格式:DOC , 页数:16 ,大小:1.39MB ,
资源ID:12801102      下载积分:12.58 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/12801102.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(西藏拉萨市那曲第二高级中学2025年数学高一上期末统考试题含解析.doc)为本站上传会员【cg****1】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

西藏拉萨市那曲第二高级中学2025年数学高一上期末统考试题含解析.doc

1、西藏拉萨市那曲第二高级中学2025年数学高一上期末统考试题 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。 2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。 3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。 4.

2、考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.在①;②;③;④上述四个关系中,错误的个数是() A.1个 B.2个 C.3个 D.4个 2.已知函数,则满足的x的取值范围是() A. B. C. D. 3.函数单调递增区间为 A. B. C D. 4.由直线上的点向圆引切线,则切线长的最小值为 A. B. C. D. 5.设,,若,则ab的最小值是() A.5 B.9 C.16 D.25 6. “”是“”的( ) A

3、充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 7.下列函数图象中,不能用二分法求零点的是() A. B. C. D. 8.已知函数是上的增函数,则实数的取值范围为() A. B. C. D. 9.将函数的图象先向左平移,然后将所得图象上所有的点的横坐标变为原来的倍(纵坐标不变),则所得到的图象对应的函数解析式为 A. B. C. D. 10.将函数的图象向左平移个单位长度,再向下平移个单位长度,得到函数的图象,那么可以取的值为( ) A. B. C. D. 二、填空题:本大题共6小题,每小题5分,共30分。 11.已知函数,且

4、关于的方程有且仅有一个实数根,那实数的取值范围为________ 12.已知集合A={x|2x>1},B={x|log2x<0},则∁AB=___ 13.如图,已知六棱锥P﹣ABCDEF的底面是正六边形,PA⊥平面ABC,PA=AB,则下列结论正确的是_____.(填序号)①PB⊥AD;②平面PAB⊥平面PBC;③直线BC∥平面PAE;④sin∠PDA 14.已知函数在上单调递减,则实数的取值范围是______ 15.如图所示,正方体的棱长为, 分别是棱,的中点,过直线的平面分别与棱.交于,设,,给出以下四个命题: ①平面平面;②当且仅当时,四边形的面积最小; ③四边形周长,

5、是单调函数;④四棱锥的体积为常函数; 以上命题中真命题的序号为___________. 16.在区间上随机取一个实数,则事件发生的概率为_________. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.已知函数(是常数)是奇函数,且满足. (1)求的值; (2)试判断函数在区间上的单调性并用定义证明. 18.已知函数.求: (1)函数的单调递减区间,对称轴,对称中心; (2)当时,函数的值域 19.设函数 (1)求函数的最小正周期和单调递增区间; (2)求函数在上的最大值与最小值及相应的x的值. 20.已知函数(且),再从条

6、件①、条件②这两个条件中选择一个作为已知. (1)判断函数的奇偶性,说明理由; (2)判断函数在上的单调性,并用单调性定义证明; (3)若不大于,直接写出实数m的取值范围. 条件①:,;条件②:,. 注:如果选择条件①和条件②分别解答,按第一个解答计分. 21.如图,点,,在函数的图象上 (1)求函数的解析式; (2)若函数图象上的两点,满足,,求四边形OMQN面积的最大值 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、B 【解析】根据元素与集合的关系,集合与集合的关系以及表示符号,及规定

7、空集是任何非空集合的真子集,即可找出错误的个数 【详解】解: “”表示集合与集合间的关系,所以①错误; 集合中元素是数,不是集合元素,所以②错误; 根据子集的定义,{0,1,2}是自身的子集, 空集是任何非空集合的真子集,所以③④正确; 所表示的关系中,错误的个数是2 故选:B 2、D 【解析】通过解不等式来求得的取值范围. 【详解】依题意, 即:或, 即:或, 解得或. 所以的取值范围是. 故选:D 3、A 【解析】,所以.故选A 4、B 【解析】过圆心作直线的垂线,垂线与直线的交点向圆引切线,切线长最小 【详解】圆心,半径,圆心到直线的距离 则切线长

8、的最小值 【点睛】本题考查圆的切线长,考查数形结合思想,属于基础题 5、D 【解析】结合基本不等式来求得的最小值. 【详解】,, , , 当且仅当时等号成立,由. 故选:D 6、B 【解析】 分析】首先根据可得:或,再判断即可得到答案. 【详解】由可得:或, 即能推出, 但推不出 “”是“”的必要不充分条件 故选:B 【点睛】本题主要考查必要不充分条件的判断,同时考查根据三角函数值求角,属于简单题. 7、B 【解析】利用二分法求函数零点所满足条件可得出合适的选项. 【详解】观察图象与轴的交点,若交点附近的函数图象连续,且在交点两侧的函数值符号相异,则可用

9、二分法求零点,故B不能用二分法求零点 故选:B. 8、A 【解析】根据分段函数是上的增函数,则每一段都为增函数,且右侧的函数值不小于左侧的函数值求解. 【详解】函数是上增函数, 所以,解得, 所以实数的取值范围是 故选:A. 9、C 【解析】把原函数解析式中的换成,得到的图象,再把的系数变成原来的倍,即得所求函数的解析式. 【详解】将函数的图象先向左平移,得到的图象, 然后将所得图象上所有的点的横坐标变为原来的2倍(纵坐标不变),得到的图象. 故选:C 10、B 【解析】写出平移变换后的函数解析式,将函数的解析式利用二倍角公式降幂,化为正弦型函数,进而可得出的表达式

10、利用赋特殊值可得出结果. 【详解】将函数的图象向左平移个单位长度,再向下平移个单位长度,所得图象对应的函数的解析式为, ,, 解得,当时,. 故选:B. 【点睛】本题考查利用三角函数图象变换求参数,解题的关键就是结合图象变换求出变换后所得函数的解析式,考查计算能力,属于中等题. 二、填空题:本大题共6小题,每小题5分,共30分。 11、 【解析】利用数形结合的方法,将方程根的问题转化为函数图象交点的问题,观察图象即可得到结果. 【详解】作出的图象,如下图所示: ∵关于的方程有且仅有一个实数根, ∴函数的图象与有且只有一个交点, 由图可知, 则实数的取值范围是

11、 故答案为:. 12、 [1,+∞) 【解析】由指数函数的性质化简集合;由对数函数的性质化简集合,利用补集的定义求解即可. 【详解】 , 所以,故答案为. 【点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合且不属于集合的元素的集合. 13、④ 【解析】由题意,分别根据线面位置关系的判定定理和性质定理,逐项判定,即可得到答案. 【详解】∵PA⊥平面ABC,如果PB⊥AD,可得AD⊥AB,但是AD与AB成60°,∴①不成立, 过A作AG⊥PB于G,如果平面PAB⊥平面PBC,可得AG⊥

12、BC,∵PA⊥BC,∴BC⊥平面PAB,∴BC⊥AB,矛盾,所以②不正确; BC与AE是相交直线,所以BC一定不与平面PAE平行,所以③不正确; 在Rt△PAD中,由于AD=2AB=2PA,∴sin∠PDA,所以④正确; 故答案为: ④ 【点睛】本题考查线面位置关系判定与证明,考查线线角,属于基础题.熟练掌握空间中线面位置关系的定义、判定、几何特征是解答的关键,其中垂直、平行关系证明中应用转化与化归思想的常见类型(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直. 14、 【解析】根据指数函数与二次

13、函数的单调性,以及复合函数的单调性的判定方法,求得在上单调递增,在区间上单调递减,再结合题意,即可求解. 【详解】令,可得抛物线的开口向上,且对称轴为, 所以函数在上单调递减,在区间上单调递增, 又由函数, 根据复合函数的单调性的判定方法, 可得函数在上单调递增,在区间上单调递减, 因为函数在上单调递减,则, 可得实数的取值范围是. 故答案:. 15、①②④ 【解析】 ①连接 ,在正方体中, 平面 ,所以 平面平面,所以①是真命题;②连接MN,因为平面,所以,四边形MENF的对角线EF是定值,要使四边形MENF面积最小,只需MN的长最小即可,当M为棱的中点时,即当且仅当

14、时,四边形MENF的面积最小;③因为,所以四边形是菱形,当时,的长度由大变小,当时,的长度由小变大,所以周长,是单调函数,是假命题;④连接,把四棱锥分割成两个小三棱锥,它们以为底,为顶点,因为三角形的面积是个常数,到平面的距离也是一个常数,所以四棱锥的体积为常函数;命题中真命题的序号为①②④ 考点:面面垂直及几何体体积公式 16、 【解析】由得:,∵在区间上随机取实数,每个数被取到的可能性相等,∴事件发生的概率为,故答案为 考点:几何概型 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、 (1) , (2) 在区间(0,0.5)上是单调

15、递减的 【解析】(Ⅰ)∵函数是奇函数,则 即 ∴------------------------2分 由得 解得 ∴,.------------------------------------------------------6分 (Ⅱ)解法1:由(Ⅰ)知, ∴,----------------------------------------8分 当时,----------------------------10分 ∴,即函数在区间上为减函数.------------12分 [解法2:设, 则= =------------------------------10分

16、∵ ∴,, ∴,即 ∴函数在区间上为减函数.--------------------------12分]. 18、(1)单调递减区间为;对称轴为,;对称中心为,;(2) 【解析】(1)首先化简函数解析式得到,然后结合函数的图象与性质即可求出单调递减区间,对称轴和对称中心; (2)由求得,即可求出值域. 【详解】(1)化简可得, 由,,可得,, ∴函数的单调递减区间为, 令,可得,故函数的对称轴为,; 令,得,故函数的对称中心为, (2)当时,, ∴,∴, ∴函数的值域为 19、(1)最小正周期,单调递增区间为,; (2)时函数取得最小值,时函数取得最大值; 【解

17、析】(1)利用二倍角公式及辅助角公式将函数化简,再根据正弦函数的性质计算可得; (2)由的取值范围,求出的取值范围,再根据正弦函数的性质计算可得; 【小问1详解】 解:因为 , 即,所以函数的最小正周期, 令,, 解得,, 所以函数的单调递增区间为,; 【小问2详解】 解:因为,所以, 所以当,即时函数取得最小值,即, 当,即时函数取得最大值,即; 20、(1)答案见解析 (2)答案见解析(3)答案见解析 【解析】(1)定义域均为,代入化简可得出与的关系,从而判断奇偶性;(2)利用定义任取,且,作差判断的正负,可得出单调性;(3)根据奇偶性和单调性可得到与

18、2的不等关系,求解可得的范围. 【小问1详解】 解:选择条件①:. 函数是偶函数,理由如下: 的定义域为,对任意,则. 因为, 所以函数是偶函数. 选择条件②:. 函数是奇函数,理由如下: 的定义域为,对任意,则. 因为, 所以函数是奇函数. 【小问2详解】 选择条件①:. 在上是增函数. 任取,且,则. 因为, 所以. 所以 ,即 所以在上是增函数. 选择条件②:. 在上减函数. 任取,且. 因为, 所以. 所以 ,即 所以在上是减函数. 【小问3详解】 选择条件①:. 实数的取值范围是. 选择条件②:. 实数的取值范围是

19、 21、(1) (2) 【解析】(1)由图可求出,从而求得,由图可知函数处取得最小值,从而可求出的值,再将点的坐标代入函数中可求出,进而可求出函数的解析式, (2)由题意求得所以,,而四边形OMQN的面积为S,则,代入化简利用三角函数的性质可求得结果 【小问1详解】 由图可知的周期T满足,得 又因为,所以,解得 又在处取得最小值, 即,得, 所以,,解得, 因为,所以.由, 得,所以 综上, 【小问2详解】 当时,, 所以.由知 此时 记四边形OMQN的面积为S,则 又 因为,所以,所以当, 即时,取得最大值 所以四边形OMQN面积的最大值是

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服