ImageVerifierCode 换一换
格式:DOC , 页数:12 ,大小:559.50KB ,
资源ID:12801053      下载积分:12.58 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/12801053.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(湖北省黄冈市浠水实验高中2025-2026学年高一上数学期末调研模拟试题含解析.doc)为本站上传会员【cg****1】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

湖北省黄冈市浠水实验高中2025-2026学年高一上数学期末调研模拟试题含解析.doc

1、湖北省黄冈市浠水实验高中2025-2026学年高一上数学期末调研模拟试题 请考生注意: 1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。 2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.已知函数,下面关于说法正确的个数是() ①的图象关于原点对称②的图象关于y轴对称 ③的值域为④在定义域上单调递减 A.1 B.2 C.3 D.4 2.C,S

2、分别表示一个扇形的周长和面积,下列能作为有序数对取值的是( ) A. B. C. D. 3.已知函数是幂函数,且其图象与两坐标轴都没有交点,则实数   A. B.2 C.3 D.2或 4.已知,且α是第四象限角,那么的值是( ) A. B.- C.± D. 5.设函数的定义域,函数的定义域为,则= A. B. C. D. 6.函数f(x)=的定义域为(  ) A.(2,+∞) B.(0,2) C.(-∞,2) D.(0,) 7.已知函数恰有2个零点,则实数a取值范围是( ) A. B. C. D. 8.4张卡片上分别写有数字1,2,3,4,

3、从这4张卡片中随机抽取2张,则取出的2张卡片的数字之积为偶数的概率为( ) A. B. C. D. 9.若直线过点,,则此直线的倾斜角是( ) A.30° B.45° C.60° D.90° 10.已知函数则函数的零点个数为() A.0 B.1 C.2 D.3 二、填空题:本大题共6小题,每小题5分,共30分。 11.已知是定义在R上的偶函数,且在上为增函数,,则不等式的解集为___________. 12.已知函数是定义在上的奇函数,若时,,则时,__________ 13.已知函数有两个零点分别为a,b,则的取值范围是_____________ 14.

4、已知扇形的弧长为2cm,圆心角为1rad,则扇形的面积为______. 15.在△ABC中,,面积为12,则=______ 16.已知函数的图象恒过点P,若点P在角的终边上,则_________ 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.已知不等式. (1)求不等式的解集; (2)若当时,不等式 总成立,求的取值范围. 18.已知函数在区间上单调,当时, 取得最大值5,当时, 取得最小值-1. (1)求的解析式 (2)当时, 函数有8个零点, 求实数的取值范围 19.已知圆的标准方程为,圆心为,直线的方程为,点在直线上,过点作圆

5、的切线,,切点分别为, (1)若,试求点的坐标; (2)若点的坐标为,过作直线与圆交于两点,当时,求直线的方程; (3)求证:经过,,三点的圆必过定点,并求出所有定点的坐标 20.已知集合, (1)当时,求; 21.设全集为,或,. (1)求,; (2)求. 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、B 【解析】根据函数的奇偶性定义判断为奇函数可得对称性,化简解析式,根据指数函数的性质可得单调性和值域. 【详解】因为的定义域为, ,即函数为奇函数, 所以函数的图象关于原点对称,即①正

6、确,②不正确; 因为, 由于单调递减,所以单调递增,故④错误; 因为,所以,, 即函数的值域为,故③正确,即正确的个数为2个, 故选:B. 【点睛】关键点点睛:理解函数的奇偶性和常见函数单调性简单的判断方式. 2、B 【解析】设扇形半径为,弧长为,则,,根据选项代入数据一一检验即可 【详解】设扇形半径为,弧长为, 则, 当,有,则无解,故A错; 当,有得,故B正确; 当,有,则无解,故C错; 当,有,则无解,故D错; 故选:B 3、A 【解析】根据幂函数的定义,求出m的值,代入判断即可 【详解】函数是幂函数, ,解得:或, 时,,其图象与两坐标轴有交点不

7、合题意, 时,,其图象与两坐标轴都没有交点,符合题意, 故, 故选A 【点睛】本题考查了幂函数的定义,考查常见函数的性质,是一道常规题 4、B 【解析】 由诱导公式对已知式子和所求式子进行化简即可求解. 【详解】根据诱导公式:,所以,,故. 故选:B 【点睛】诱导公式的记忆方法:奇变偶不变,符号看象限. 5、B 【解析】由题意知, ,所以,故选B. 点睛:集合是高考中必考知识点,一般考查集合的表示、集合的运算比较多.对于集合的表示,特别是描述法的理解,一定要注意集合中元素是什么,然后看清其满足的性质,将其化简;考查集合的运算,多考查交并补运算,注意利用数轴来运算,要特

8、别注意端点的取值是否在集合中,避免出错 6、B 【解析】列不等式求解 【详解】,解得 故选:B 7、D 【解析】由在区间上单调递减,分类讨论,,三种情况,根据零点个数求出实数a的取值范围. 【详解】函数在区间上单调递减,且方程的两根为. 若时,由解得或,满足题意. 若时,,,当时,,即函数在区间上只有一个零点,因为函数恰有2个零点,所以且. 当时,,,此时函数有两个零点,满足题意. 综上, 故选:D 8、D 【解析】从4张卡片上分别写有数字1,2,3,4中随机抽取2张的基本事件有: 12,13,14,23,24,34,一共6种, 其中数字之积为偶数的有:12,1

9、4,23,24,34一共有5种, 所以取出的2张卡片的数字之积为偶数的概率为, 故选:D 9、A 【解析】根据两点求解直线的斜率,然后利用斜率求解倾斜角. 【详解】因为直线过点,, 所以直线的斜率为; 所以直线的倾斜角是30°, 故选:A. 10、C 【解析】的零点个数等于的图象与的图象的交点个数,作出函数f(x)和的图像,根据图像即可得到答案. 【详解】的零点个数等于的图象与的图象的交点个数,由图可知,的图象与的图象的交点个数为2. 故选:C. 二、填空题:本大题共6小题,每小题5分,共30分。 11、 【解析】根据题意求出函数的单调区间及所过的定点,进

10、而解出不等式. 【详解】因为是定义在R上的偶函数,且在上为增函数,,所以函数在上为减函数,. 所以且在上为增函数,,在上为减函数,. 所以的解集为:. 故答案为:. 12、 【解析】函数是定义在上的奇函数,当时,当时,则,,故答案为. 13、 【解析】根据函数零点可转化为有2个不等的根,利用对数函数的性质可知,由均值不等式求解即可. 详解】不妨设, 因为函数有两个零点分别为a,b, 所以, 所以, 即,且, , 当且仅当,即时等号成立,此时不满足题意, , 即, 故答案为: 14、2 【解析】首先由扇形的弧长与圆心角求出扇形的半径,再根据扇形的面积公式计

11、算可得; 【详解】解:因为扇形的弧长为2cm,圆心角为1rad,所以扇形的半径cm,所以扇形的面积; 故答案为: 15、 【解析】利用面积公式即可求出sinC.使用二倍角公式求出cos2C 【详解】由题意,在中,,,面积为12, 则,解得 ∴ 故答案为 【点睛】本题考查了三角形的面积公式,二倍角公式在解三角形中的应用,其中解答中应用三角形的面积公式和余弦的倍角公式,合理余运算是解答的关键,着重考查了运算与求解能力,属于基础题 16、 【解析】由对数函数的性质可得点的坐标,由三角函数的定义求得与的值,再由正弦的二倍角公式即可求解. 【详解】易知恒过点,即, 因为点在角的

12、终边上,所以, 所以,, 所以, 故答案为:. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(1);(2). 【解析】(1)利用对数函数的单调性以及真数大于零得出关于实数的不等式组,解出即可; (2)令,利用参变量分离法得出,求出函数在区间上的最小值,即可得出实数的取值范围. 【详解】(1)由已知可得:,因此,原不等式解集为; (2)令,则原问题等价, 且,令, 可得, 当时,即当时,函数取得最小值,即,. 因此,实数的取值范围是. 【点睛】本题考查对数不等式的求解,同时也考查了指数不等式恒成立问题,将问题在转化为二次

13、不等式在区间上恒成立是解题的关键,考查化归与转化思想的应用,属于中等题. 18、(1);(2). 【解析】(1)由函数的最大值和最小值求出,由周期求出ω,由特殊点的坐标出φ的值,可得函数的解析式 (2)等价于时,方程有个不同的解.即与有个不同交点,画图数形结合即可解得 【详解】(1)由题知, ..又,即,的解析式为. (2)当时,函数有个零点, 等价于时,方程有个不同的解. 即与有个不同交点. 由图知必有, 即.实数的取值范围是. 【点睛】已知函数有零点求参数常用的方法和思路: (1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)

14、分离参数法:先将参数分离,转化成函数的值域问题解决; (3)数形结合法:先对解析式变形,在同一个平面直角坐标系中,画出函数的图像,然后数形结合求解. 19、(1)或;(2)或;(3)详见解析 【解析】(1)点在直线上,设,由对称性可知,可得,从而可得点坐标.(2)分析可知直线的斜率一定存在,设其方程为:.由已知分析可得圆心到直线的距离为,由点到线的距离公式可求得的值.(3)由题意知,即.所以过三点的圆必以为直径.设,从而可得圆的方程,根据的任意性可求得此圆所过定点 试题解析:解:(1)直线的方程为,点在直线上,设, 由题可知,所以, 解之得:故所求点的坐标为或 (2)易知直线的斜

15、率一定存在,设其方程为:, 由题知圆心到直线的距离为,所以, 解得,或, 故所求直线的方程为:或 (3)设,则的中点,因为是圆的切线, 所以经过三点的圆是以为圆心,以为半径的圆, 故其方程为: 化简得:,此式是关于的恒等式, 故解得或 所以经过三点的圆必过定点或 考点:1直线与圆的位置关系问题;2过定点问题 20、(1) (2) 【解析】(1)解一元二次不等式求得集合,由补集和并集的定义可运算求得结果; (2)分别在和两种情况下,根据交集为空集可构造不等式求得结果. 【小问1详解】 由题意得,或, , . 【小问2详解】 , 当时,,符合题意, 当时,由,得, 故a的取值范围为 21、(1)或, (2)或 【解析】(1)根据集合的交集和并集的定义即可求解; (2)先根据补集的定义求出,然后再由交集的定义即可求解. 【小问1详解】 解:因为或,, 所以或,; 【小问2详解】 解:因为全集为,或,, 所以或, 所以或.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服