ImageVerifierCode 换一换
格式:DOC , 页数:19 ,大小:935KB ,
资源ID:12796605      下载积分:12.58 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/12796605.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(2025-2026学年湖南省长沙市第一中学、湖南师范大学附属中学高一数学第一学期期末考试试题含解析.doc)为本站上传会员【y****6】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2025-2026学年湖南省长沙市第一中学、湖南师范大学附属中学高一数学第一学期期末考试试题含解析.doc

1、2025-2026学年湖南省长沙市第一中学、湖南师范大学附属中学高一数学第一学期期末考试试题 注意事项: 1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。 2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。 3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。 4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求

2、的 1.关于函数有下述四个结论: ①是偶函数;②在区间单调递减; ③在有个零点;④的最大值为. 其中所有正确结论的编号是( ) A.①②④ B.②④ C.①④ D.①③ 2.化简 = A.sin2+cos2 B.sin2-cos2 C.cos2-sin2 D.± (cos2-sin2) 3.幂函数的图象过点,则函数的值域是() A. B. C. D. 4.已知圆:与圆:,则两圆的位置关系是 A.相交 B.相离 C.内切 D.外切 5.在中,若,则的形状为() A.等腰三角形 B.直角三角形 C.等腰直角三角形 D.等腰三角形或直角三角形 6

3、.符号函数是一个很有用的函数,符号函数能够把函数的符号析离出来,其表达式为若定义在上的奇函数,当时,,则的图象是() A. B. C. D. 7.已知向量,,那么() A.5 B. C.8 D. 8.函数在上的最小值为,最大值为2,则的最大值为() A. B. C. D.2 9.已知函数,则的大致图像为() A. B. C. D. 10.已知、为非零向量,“=”是“=”的() A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 二、填空题:本大题共6小题,每小题5分,共30分。 11.化简:________. 12.已知函数 (1

4、利用五点法画函数在区间上的图象 (2)已知函数,若函数的最小正周期为,求的值域和单调递增区间; (3)若方程在上有根,求的取值范围 13.函数的最大值为__________ 14.函数(其中,,)的图象如图所示,则函数的解析式为__________ 15.若,且,则上的最小值是_________. 16.函数的定义域为D,给出下列两个条件: ①对于任意,当时,总有; ②在定义域内不是单调函数. 请写出一个同时满足条件①②的函数,则______________. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.已知函数为的零

5、点,为图象的对称轴 (1)若在内有且仅有6个零点,求; (2)若在上单调,求的最大值 18.如图,在平面直角坐标系中,以轴的非负半轴为始边的锐角的终边与单位圆相交于点,已知的横坐标为. (1)求的值; (2)求的值. 19.已知函数是定义在R上的奇函数,且当时,,现已画出函数f(x)在y轴左侧的图象,如图所示 (1)请补出函数,剩余部分的图象,并根据图象写出函数,的单调增区间; (2)求函数,的解析式; (3)已知关于x的方程有三个不相等的实数根,求实数的取值范围 20.设函数. (1)若,且均为正实数,求的最小值,并确定此时实数的值; (2)若满足在上恒成立,

6、求实数的取值范围. 21.(1)计算:; (2)已知,,求,的值. 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、A 【解析】利用偶函数的定义可判断出命题①的正误;去绝对值,利用余弦函数的单调性可判断出命题②的正误;求出函数在区间上的零点个数,并利用偶函数的性质可判断出命题③的正误;由取最大值知,然后去绝对值,即可判断出命题④的正误. 【详解】对于命题①,函数的定义域为,且,则函数为偶函数,命题①为真命题; 对于命题②,当时,,则,此时,函数在区间上单调递减,命题②正确; 对于命题③,当时,,则,

7、 当时,,则, 由偶函数的性质可知,当时,,则函数在上有无数个零点,命题③错误; 对于命题④,若函数取最大值时,,则, ,当时,函数取最大值,命题④正确. 因此,正确的命题序号为①②④. 故选A. 【点睛】本题考查与余弦函数基本性质相关的命题真假的判断,解题时要结合自变量的取值范围去绝对值,结合余弦函数的基本性质进行判断,考查推理能力,属于中等题. 2、A 【解析】利用诱导公式化简根式内的式子,再根据同角三角函数关系式及大小关系,即可化简 【详解】根据诱导公式,化简得 又因为 所以选A 【点睛】本题考查了三角函数式的化简,关键注意符号,属于中档题 3、C 【

8、解析】设,带点计算可得,得到,令转化为二次函数的值域求解即可. 【详解】设, 代入点得 , 则,令, 函数的值域是. 故选:C. 4、C 【解析】分析:求出圆心的距离,与半径的和差的绝对值比较得出结论 详解:圆,圆,,所以内切.故选C 点睛:两圆的位置关系判断如下:设圆心距为,半径分别为,则: ,内含;,内切;,相交;,外切;,外离 5、D 【解析】利用诱导公式和两角和差的正弦公式、正弦的二倍角公式化简已知条件,再结合角的范围即可求解. 【详解】因为, 由可得:, 即, 所以, 所以, 所以或, 因为,, 所以或, 所以的形状为等腰三角形或直

9、角三角形, 故选:D. 6、C 【解析】根据函数的奇偶性画出的图象,结合的知识确定正确答案. 【详解】依题意,是定义在上的奇函数,图象关于原点对称. 当时,, 结合的奇偶性,作出的大致图象如下图所示, 根据的定义可知,选项C符合题意. 故选:C 7、B 【解析】根据平面向量模的坐标运算公式,即可求出结果. 【详解】因为向量,,所以 . 故选:B. 8、B 【解析】将写成分段函数,画出函数图象数形结合,即可求得结果. 【详解】当x≥0时,, 当<0时,, 作出函数的图象如图: 当时,由=,解得=2 当时, 当<0时,由, 即, 解得=, ∴

10、此时=, ∵[]上的最小值为,最大值为2, ∴2,, ∴的最大值为, 故选:B 【点睛】本题考查含绝对值的二次型函数的最值,涉及图象的绘制,以及数形结合,属综合基础题. 9、B 【解析】计算的值即可判断得解. 【详解】解:由题得,所以排除选项A,D. ,所以排除选项C. 故选:B 10、A 【解析】根据“”和“”之间的逻辑推理关系,可得答案. 【详解】已知、为非零向量,故由可知,; 当时,比如,推不出, 故“”是“”的充分不必要条件, 故选:A 二、填空题:本大题共6小题,每小题5分,共30分。 11、-1 【解析】原式)( .故答案为 【点睛】本

11、题的关键点有: 先切化弦,再通分; 利用辅助角公式化简; 同角互化. 12、(1)(2)的值域为,单调递增区间为; (3) 【解析】(1)取特殊点,列表,描点,连线,画出函数图象;(2)化简得到的解析式,进而求出值域,整体法求解单调递增区间;(3)整体法先得到,换元后得到在上有根,进而求出的取值范围. 【小问1详解】 作出表格如下: x 0 0 2 0 -2 0 在平面直角坐标系中标出以下五点,,,,,,用平滑的曲线连接起来,就是函数在区间上的图象,如下图: 【小问2详解】 ,其中,由题意得:,解得:,故,故的值域

12、为,令,解得:,所以的单调递增区间为: 【小问3详解】 因为,所以,则,令,则,所以方程在上有根等价于在上有根,因为,所以,解得:,故的取值范围是. 13、 【解析】利用二倍角余弦公式,把问题转化为关于的二次函数的最值问题. 【详解】 , 又, ∴函数的最大值为. 故答案为:. 14、 【解析】如图可知函数的最大值 , 当时,代入,, 当时,代入,, 解得 则函数的解析式为 15、 【解析】将的最小值转化为求的最小值,然后展开后利用基本不等式求得其最小值 【详解】解:因为,且, ,当且仅当时,即,时等号成立; 故答案为: 16、 【解析】根

13、据题意写出一个同时满足①②的函数即可. 【详解】解:易知:,上单调递减,上单调递减, 故对于任意,当时,总有; 且在其定义域上不单调. 故答案为:. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(1);(2). 【解析】(1)根据的零点和对称中心确定出的取值情况,再根据在上的零点个数确定出,由此确定出的取值,结合求解出的取值,再根据以及的范围确定出的取值,由此求解出的解析式; (2)先根据在上单调确定出的范围,由此确定出的可取值,再对从大到小进行分析,由此确定出的最大值. 【详解】(1)因为是的零点,为图象的对称轴, 所以,所

14、以, 因为在内有且仅有个零点, 分析正弦函数函数图象可知:个零点对应的最短区间长度为,最长的区间长度小于, 所以,所以, 所以,所以,所以,所以, 所以,代入,所以, 所以,所以, 又因为,所以, 所以; (2)因为在上单调,所以,即,所以, 又由(1)可知,所以, 所以, 当时,,所以, 所以,所以此时, 因为,所以, 又因为在时显然不单调 所以在上不单调,不符合; 当时,,所以, 所以,所以此时, 因为,所以, 又因为在时显然单调递减, 所以在上单调递减,符合; 综上可知,的最大值为. 【点睛】思路点睛:求解动态的三角函数涉及的取值范围问题的常

15、见突破点: (1)结论突破:任意对称轴(对称中心)之间的距离为,任意对称轴与对称中心之间的距离为; (2)运算突破:已知在区间内单调,则有且; 已知在区间内没有零点,则有且. 18、(1) (2) 【解析】(1)根据三角函数的定义,直接求解; (2)求出,再根据两角和的余弦公式求解即可. 【小问1详解】 设,由已知,,, 所以, 得. 【小问2详解】 由(1)知,, 所以 19、(1)图象见解析,函数的单调增区间为; (2); (3). 【解析】(1)根据奇函数的图象特征即可画出右半部分的图象,结合图象,即可得出单调增区间; (2)根据函数的奇偶性即可直

16、接求出函数的解析式; (3)由(2)得出函数的解析式,画出函数图象,利用数形结合的数学思想即可得出m的取值范围. 【小问1详解】 剩余的图象如图所示, 有图可知,函数的单调增区间为; 【小问2详解】 因为当时,, 所以当时,则,有, 由为奇函数,得, 即当时,, 又, 所以函数的解析式为; 【小问3详解】 由(2)得,, 作出函数与图象,如图, 由图可知,当时,函数与图象有3个交点, 即方程有3个不等的实根. 所以m的取值范围为. 20、(1)的最小值为3,此时;(2) 【解析】(1)由可得,则由结合基本不等式即可求出; (2)不等式恒成立等价于对恒成立,利用判别式可得对恒成立,再利用判别式即可求出的范围. 【详解】(1),则, , 当且仅当,即时等号成立, 的最小值为3,此时; (2), 则, 即对恒成立, 则, 即对恒成立, 则,解得. 【点睛】本题考查基本不等式的应用,考查一元二次不等式的恒成立问题,属于中档题. 21、(1);(2) 【解析】(1)根据指数运算与对数运算的法则计算即可; (2)先根据指对数运算得,进而,再将其转化为求解即可. 【详解】解:(1)原式= = (2) ∴,,化为:, ,解得 ∴

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服