ImageVerifierCode 换一换
格式:DOC , 页数:15 ,大小:854KB ,
资源ID:12794782      下载积分:12.58 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/12794782.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(2025年内蒙古集宁一中数学高一第一学期期末统考试题含解析.doc)为本站上传会员【zh****1】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2025年内蒙古集宁一中数学高一第一学期期末统考试题含解析.doc

1、2025年内蒙古集宁一中数学高一第一学期期末统考试题 注意事项 1.考生要认真填写考场号和座位序号。 2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。 3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.已知圆上的一段弧长等于该圆的内接正方形的边长,则这段弧所对的圆周角的弧度数为( ) A. B. C. D. 2.下列函数中最小值为6的是( ) A. B. C

2、 D. 3. “”是“”的( ) A.充分非必要条件 B.必要非充分条件 C.充要条件 D.既非充分也非必要条件 4.当时,,则a的取值范围是 A.(0,) B.(,1) C.(1,) D.(,2) 5.正方形的边长为,它是水平放置的一个平面图形的直观图,则原图形的周长是( ) A. B. C. D. 6.已知函数在上单调递减,则的取值范围为( ) A. B. C. D. 7.已知全集,,,则()=() A.{} B.{} C.{} D.{} 8.要得到函数的图像,只需将函数图的图像 A.向右平移个单位 B.向右平移个单位 C.向左平

3、移个单位 D.向左平移个单位 9.设,则a,b,c的大小关系是 A. B. C. D. 10.函数的图像大致为 A. B. C. D. 二、填空题:本大题共6小题,每小题5分,共30分。 11.若,则_____________. 12.若,则____ 13.下列命题中所有正确的序号是______________ ①函数最小值为4; ②函数的定义域是,则函数的定义域为; ③若,则的取值范围是; ④若 (,),则 14.我国古代数学名著《续古摘奇算法》(杨辉著)一书中有关于三阶幻方的问题:将1, 2, 3, 4, 5, 6, 7, 8, 9分别填入的方格中,使得每一行

4、每一列及对角线上的三个数的和都相等 (如图所示),我们规定:只要两个幻方的对应位置(如每行第一列的方格)中的数字不全相同,就称为不同的幻方,那么所有不同的三阶幻方的个数是__________. 8 3 4 1 5 9 6 7 2 15.已知幂函数在上单调递减,则______ 16.若函数的图象关于直线对称,则的最小值是________. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.已知点及圆. (1)若直线过点且与圆心的距离为1,求直线的方程; (2)设过点的直线与圆交于两点,当时,求以线段为直径的圆的方程; (

5、3)设直线与圆交于两点,是否存在实数,使得过点的直线垂直平分弦?若存在,求出实数的值;若不存在,请说明理由 18.已知长方体AC1中,棱AB=BC=3,棱BB1=4,连接B1C,过B点作B1C的垂线交CC1于E,交B1C于F. (1)求证A1C⊥平面EBD; (2)求二面角B1—BE—A1的正切值. 19.某城市地铁项目正在紧张建设中,通车后将给市民出行带来便利.已知某条线路通车后,地铁的发车时间间隔(单位:分钟)满足.经测算,地铁载客量与发车时间间隔相关,当时地铁为满载状态,载客量为人,当时,载客量会减少,减少的人数与的平方成正比,且发车时间间隔为分钟时的载客量为人,记地铁载客量

6、为. (1)求的表达式,并求当发车时间间隔为分钟时,地铁的载客量; (2)若该线路每分钟的净收益为(元),问当发车时间间隔为多少时,该线路每分钟的净收益最大?每分钟的最大净收益为多少? 20.已知函数是奇函数,是偶函数 (1)求的值; (2)设,若对任意恒成立,求实数a的取值范围 21.某品牌手机公司的年固定成本为50万元,每生产1万部手机需增加投入20万元,该公司一年内生产万部手机并全部销售完当年销售量不超过40万部时,销售1万部手机的收入万元;当年销售量超过40万部时,销售1万部手机的收入万元 (1)写出年利润万元关于年销售量万部的函数解析式; (2)年销售量为多少万部时,

7、利润最大,并求出最大利润. 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、C 【解析】求出圆内接正方形边长(用半径表示),然后由弧度制下角的定义可得 【详解】设此圆的半径为,则正方形的边长为, 设这段弧所对的圆周角的弧度数为,则,解得, 故选:C. 【点睛】本题考查弧度制下角的定义,即圆心角等于所对弧长除以半径.本题属于简单题 2、B 【解析】利用基本不等式逐项分析即得. 【详解】对于A,当时,,故A错误; 对于B,因为,所以,当且仅当,即时取等号,故B正确; 对于C,因为,所以,当且仅当,

8、即,等号不能成立,故C错误; 对于D,当时,,故D错误. 故选:B. 3、A 【解析】利用充分条件和必要条件的定义分析判断即可 【详解】当时,, 当 时,或, 所以“”是“”的充分非必要条件, 故选:A 4、B 【解析】分和两种情况讨论,即可得出结果. 【详解】当时,显然不成立. 若时 当时,,此时对数,解得,根据对数的图象和性质可知,要使在时恒成立,则有,如图选B. 【点睛】本题主要考查对数函数与指数函数的应用,熟记对数函数与指数函数的性质即可,属于常考题型. 5、B 【解析】根据斜二测画法画直观图的性质,即平行于轴的线段长度不变,平行于轴的线段的长度减半

9、结合图形求得原图形的各边长,可得周长 【详解】因为直观图正方形的边长为1cm,所以, 所以原图形为平行四边形OABC,其中,, , 所以原图形的周长 6、C 【解析】可分析单调递减,即将题目转化为在上单调递增,分别讨论与的情况,进而求解 【详解】由题可知单调递减,因为在上单调递减,则在上单调递增, 当时,在上单调递减,不符合题意,舍去; 当时,,解得,即 故选C 【点睛】本题考查对数函数的单调性的应用,考查复合函数单调性问题,考查解不等式 7、D 【解析】先求得,再求与集合的交集即可. 【详解】因为全集,,, 故可得,则(). 故选:. 8、D 【解析

10、根据三角函数图像变换的知识,直接选出正确选项. 【详解】依题意,故向左平移个单位得到,故选D. 【点睛】本小题主要考查三角函数图像变换的知识,属于基础题. 9、D 【解析】运用对数函数、指数函数的单调性,利用中间值法进行比较即可. 【详解】,因此可得 . 故选:D 【点睛】本题考查了对数式、指数式之间的大小比较问题,考查了对数函数、指数函数的单调性,考查了中间值比较法,属于基础题. 10、A 【解析】详解】由得, 故函数的定义域为 又, 所以函数为奇函数,排除B 又当时,;当时,.排除C,D.选A 二、填空题:本大题共6小题,每小题5分,共30分。 11

11、 【解析】平方得 12、##0.25 【解析】运用同角三角函数商数关系式,把弦化切代入即可求解. 【详解】, 故答案为:. 13、③④ 【解析】利用基本不等式可判断①正误;利用抽象函数的定义域可判断②的正误;解对数不等式可判断③;构造函数,函数在上单调递减,结合,求得可判断④. 详解】对于①,当时,,由基本不等式可得, 当且仅当时,即当时,等号成立,但,故等号不成立, 所以,函数,的最小值不是,①错误; 对于②,若函数的定义域为,则有,解得,即函数的定义域为,②错误; 对于③,若,所以当时,解得:,不满足;当时,解得:,所以的取值范围是,③正确; 对于④,令,函

12、数在上单调递减,由得,则,即,故④正确. 故答案为:③④. 14、8 【解析】三阶幻方,是最简单的幻方,由1,2,3,4,5,6,7,8,9.其中有8种排法 4 9 2、3 5 7、8 1 6;2 7 6、9 5 1、4 3 8; 2 9 4、7 5 3、6 1 8;4 3 8、9 5 1、2 7 6; 8 1 6、3 5 7、4 9 2;6 1 8、7 5 3、2 9 4; 6 7 2、1 5 9、8 3 4;8 3 4、1 5 9、6 7 2 故答案为:8 15、## 【解析】依题意得且,即可求出,从而得到函数解析式,再代入求值即可; 【详解】解:由题意得且,则,

13、故 故答案为: 16、 【解析】 根据正弦函数图象的对称性求解. 【详解】依题意可知, 得, 所以, 故当时,取得最小值. 故答案为:. 【点睛】本题考查三角函数的对称性.正弦函数的对称轴方程是,对称中心是 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(1)或;(2);(3)不存在. 【解析】(1)设出直线方程,结合点到直线距离公式,计算参数,即可.(2)证明得到点P为MN的中点,建立圆方程,即可.(3)将直线方程代入圆方程,结合交点个数,计算a的范围,计算直线的斜率,计算a的值,即可 【详解】(1)直线斜率存在时,

14、设直线的斜率为,则方程为,即.又圆的圆心为,半径,由,解得. 所以直线方程为,即. 当的斜率不存在时,的方程为,经验证也满足条件 即直线的方程为或. (2)由于,而弦心距, 所以. 所以恰为的中点 故以为直径的圆的方程为. (3)把直线代入圆的方程,消去,整理得. 由于直线交圆于两点, 故, 即,解得. 则实数的取值范围是 设符合条件的实数存在, 由于垂直平分弦,故圆心必在上.所以的斜率, 而, 所以.由于, 故不存在实数,使得过点的直线垂直平分弦. 【点睛】考查了点到直线距离公式,考查了圆方程计算方法,考查了直线斜率计算方法,难度偏难 18、(1)证明见

15、解析 (2) 【解析】(1)先证明平面,则,再证明平面,则,从而即可证明A1C⊥平面EBD; (2)由平面,又,则,进而可得是二面角平面角,在中,求出,即可在中求出,从而即可得答案. 【小问1详解】 证明:平面,,又,, 平面,, 又平面,,且,, 平面, ,又, A1C⊥平面EBD; 【小问2详解】 解:平面,又, 是二面角的平面角, 在中,, 在中,, . 19、(1),人(2)当发车时间间隔为分钟时,该线路每分钟的净收益最大,每分钟的最大净收益为元 【解析】(1)由题意分别写出与时,的表达式,写成分段函数的形式,可得的表达式,可得的值; (2)分别求

16、出时,时,净收益为的表达式,并求出其最大值,进行比较可得净收益最大及收益最大时的时间. 【详解】解:当时, 当时,设 解得,所以, 所以 (人) 当时, 当时 当时, 当且仅当时,即时, 取到最大值. 答:的表达式为 当发车时间间隔为分钟时,地铁的载客量为人. 当发车时间间隔为分钟时,该线路每分钟的净收益最大,每分钟的最大净收益为元. 【点睛】本题主要考查分段函数解析式的求解及函数模型的实际应用,及利用基本不等式求解函数的最值,综合性大,属于中档题. 20、(1) (2) 【解析】(1)利用奇函数的定义可求得实数的值,利用偶函数的定义可求得实

17、数的值,即可求得的值; (2)分析可知函数在上为增函数,可求得,根据已知条件得出关于实数的不等式组,由此可解得实数的取值范围. 【小问1详解】 解:由于为奇函数,且定义域为,则, 因为,所以,, 所以,恒成立,所以,,即. 由于,, 是偶函数, ,则, 所以,,所以,, 因此,. 【小问2详解】 解:,, 因为函数在上为增函数,函数在上为减函数, 所以,函数在区间上是增函数, 当时,,所以,, 由题意得,解之得, 因此,实数的取值范围是. 21、(1);(2)年销售量为45万部时,最大利润为7150万元. 【解析】(1)依题意,分和两段分别求利润=收入-成本,即得结果; (2)分和两段分别求函数的最大值,再比较两个最大值的大小,即得最大利润. 【详解】解:(1)依题意,生产万部手机,成本是(万元), 故利润,而, 故, 整理得,; (2)时,,开口向下的抛物线,在时,利润最大值为; 时,, 其中,在上单调递减,在上单调递增,故 时,取得最小值, 故在 时,y取得最大值 而, 故年销售量为45万部时,利润最大,最大利润为7150万元. 【点睛】方法点睛: 分段函数求最值时,需要每一段均研究最值,再比较出最终的最值.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服