ImageVerifierCode 换一换
格式:DOC , 页数:13 ,大小:519.50KB ,
资源ID:12794687      下载积分:12.58 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/12794687.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(2025年吉林省延边州数学高一第一学期期末达标测试试题含解析.doc)为本站上传会员【zh****1】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2025年吉林省延边州数学高一第一学期期末达标测试试题含解析.doc

1、2025年吉林省延边州数学高一第一学期期末达标测试试题 注意事项: 1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。 2.答题时请按要求用笔。 3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。 4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。 5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.已知,则的最大值为( ) A. B.

2、 C.0 D.2 2.将函数的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向左平移个单位,所得函数图象的一条对称轴是() A. B. C. D. 3.总体由编号为01,02,…,49,50的50个个体组成,利用下面的随机数表选取6个个体,选取方法是从随机数表第7行的第9列和第10列数字开始从左到右依次选取两个数字,则选出的第4个个体的编号为() 附:第6行至第8行的随机数表 2748 6198 71644148 7086 2888 8519 1620 7477 01111630 24042979 7991 96

3、24 5125 32114919 7306 4916 76778733 9974 6732 2635 7900 3370 A.11 B.24 C.25 D.20 4.满足的集合的个数为() A. B. C. D. 5.给定四个函数:①;②();③;④.其中是奇函数的有() A.1个 B.2个 C.3个 D.4个 6.已知向量,,则下列结论正确的是() A.// B. C. D. 7.已知函数是奇函数,则 A. B. C. D. 8.已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,

4、4},则= A.{1} B.{3,5} C.{1,2,4,6} D.{1,2,3,4,5} 9.不等式成立x的取值集合为( ) A. B. C. D. 10.在空间给出下面四个命题(其中、为不同的两条直线),、为不同的两个平面) ① ② ③ ④ 其中正确的命题个数有 A.1个 B.2个 C.3个 D.4个 二、填空题:本大题共6小题,每小题5分,共30分。 11.已知,则的值为________ 12.已知圆心角为2rad的扇形的周长为12,则该扇形的面积为____________. 13.已知集合,集合,则________ 14.函数的定义域为D,给出

5、下列两个条件:①;②任取且,都有恒成立.请写出一个同时满足条件①②的函数,则___________. 15.设函数f(x)的定义域为R,f(x+1)为奇函数,f(x+2)为偶函数,当x∈[1,2]时,f(x)=ax2+b.若f(0)+f(3)=6,则f()=____________. 16.已知α为第二象限角,且则的值为______. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.已知函数 (Ⅰ)求函数的最小正周期 (Ⅱ)求函数在上的最大值与最小值 18.如图,在等腰梯形中,, (1)若与共线,求k的值; (2)若P为边上的动点,

6、求的最大值 19.设函数 (1)设,求函数的最大值和最小值; (2)设函数为偶函数,求的值,并求函数的单调增区间 20.已知平面上点,且. (1)求; (2)若点,用基底表示. 21.某产品在出厂前需要经过质检,质检分为2个过程.第1个过程,将产品交给3位质检员分别进行检验,若3位质检员检验结果均为合格,则产品不需要进行第2个过程,可以出厂;若3位质检员检验结果均为不合格,则产品视为不合格产品,不可以出厂;若只有1位或2位质检员检验结果为合格,则需要进行第2个过程.第2个过程,将产品交给第4位和第5位质检员检验,若这2位质检员检验结果均为合格,则可以出厂,否则视为不合格产品,不可

7、以出厂.设每位质检员检验结果为合格的概率均为,且每位质检员的检验结果相互独立 (1)求产品需要进行第2个过程的概率; (2)求产品不可以出厂的概率 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、C 【解析】把所求代数式变形,转化成,再对其中部分以基本不等式求最值即可解决. 【详解】时,(当且仅当时等号成立) 则,即的最大值为0. 故选:C 2、D 【解析】根据三角形函数图像变换和解析式的关系即可求出变换后函数解析式,从而根据余弦函数图像的性质可求其对称轴. 【详解】将函数的图象上各点的横坐标伸

8、长到原来的2倍(纵坐标不变),则函数解析式变为; 向左平移个单位得, 由余弦函数的性质可知,其对称轴一定经过图象的最高点或最低点,故对称轴为:,k∈Z, k=1时,. 故选:D. 3、C 【解析】根据题意,直接从所给随机数表中读取,即可得出结果. 【详解】由题意,编号为的才是需要的个体; 由随机数表依次可得:, 故第四个个体编号为25. 故选:C 【点睛】本题考查了随机数表的读法,注意重复数据只取一次,属于基础题. 4、B 【解析】列举出符合条件的集合,即可得出答案. 【详解】满足的集合有:、、. 因此,满足的集合的个数为. 故选:B. 【点睛】本题考查符合条

9、件的集合个数的计算,只需列举出符合条件的集合即可,考查分析问题和解决问题的能力,属于基础题. 5、B 【解析】首先求出函数的定义域,再由函数的奇偶性定义即可求解. 【详解】①函数的定义域为,且, ,则函数是奇函数; ②函数的定义域关于原点不对称,则函数()为非奇非偶函数; ③函数的定义域为,,则函数不是奇函数; ④函数的定义域为,, 则函数是奇函数. 故选:B 6、B 【解析】采用排除法,根据向量平行,垂直以及模的坐标运算,可得结果 【详解】因为, 所以A不成立; 由题意得: ,所以 , 所以B成立; 由题意得: ,所以 , 所以C不成立; 因为,,

10、 所以,所以D不成立. 故选:B. 【点睛】本题主要考查向量的坐标运算,属基础题. 7、A 【解析】由函数的奇偶性求出,进而求得答案 【详解】因为是奇函数,所以, 即,则, 故. 【点睛】本题考查函数的奇偶性,属于基础题 8、C 【解析】根据补集的运算得.故选C. 【考点】补集的运算. 【易错点睛】解本题时要看清楚是求“”还是求“”,否则很容易出现错误;一定要注意集合中元素的互异性,防止出现错误 9、B 【解析】先求出时,不等式的解集,然后根据周期性即可得答案. 【详解】解:不等式, 当时,由可得,又最小正周期为, 所以不等式成立的x的取值集合为. 故选:

11、B. 10、C 【解析】:①若α,则,根据线面垂直的性质可知正确; ②若,则;不正确,也可能是m在α内;错误; ③若,则;据线面垂直的判定定理可知正确; ④若,根据线面平行判定的定理可知正确 得到①③④正确,故选C 二、填空题:本大题共6小题,每小题5分,共30分。 11、 【解析】利用正弦、余弦、正切之间的商关系,分式的分子、分母同时除以即可求出分式的值. 【详解】 【点睛】本题考查了同角三角函数的平方和关系和商关系,考查了数学运算能力. 12、9 【解析】根据题意条件,先设出扇形的半径和弧长,并找到弧长与半径之间的关系,通过已知的扇形周长,可以求解出扇形的半径

12、和弧长,然后再利用完成求解. 【详解】设扇形的半径为,弧长为,由已知得,圆心角,则, 因为扇形的周长为12,所以, 所以,, 则. 故答案为:9. 13、 【解析】由交集定义计算 【详解】由题意 故答案为: 14、(答案为不唯一) 【解析】由题意可知函数在定义域内为增函数,且,从而可得其解析式 【详解】因为函数的定义域为D,且任取且,都有恒成立, 所以的定义域内为增函数, 因为, 所以(答案为唯一) 故答案为:(答案为不唯一) 15、 【解析】由f(x+1)为奇函数,f(x+2)为偶函数,可得,,再结合已知的解析式可得,然后结合已知可求出,从而可得当时,,进

13、而是结合前面的式子可求得答案 【详解】因为f(x+1)为奇函数,所以的图象关于点对称, 所以,且 因为f(x+2)为偶函数, 所以的图象关于直线对称,, 所以,即, 所以,即, 当x∈[1,2]时,f(x)=ax2+b,则 , 因为,所以,得, 因为,所以, 所以当时,, 所以, 故答案为: 16、 【解析】根据已知求解得出,再利用诱导公式和商数关系化简可求 【详解】由,得,得或. α为第二象限角,, . 故答案:. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(1)(2)最大值1,最小值0 【解析】(

14、1)先利用二倍角正余弦公式以及配角公式将函数化为基本三角函数,再根据正弦函数性质求最小正周期.(2)先根据,得正弦函数取值范围,再求函数最值 试题解析:(Ⅰ) ∴的最小正周期 (Ⅱ)∵,∴, ∴, ∴,即: 当且仅当时,取最小值, 当且仅当,即时,取最大值, 点睛:三角恒等变换的综合应用主要是将三角变换与三角函数的性质相结合,通过变换把函数化为的形式再借助三角函数图象研究性质,解题时注意观察角、函数名、结构等特征 18、(1);(2)12 【解析】(1)选取为基底,用基底表示其他向量后,由向量共线可得; (2)设,,求得,由函数知识得最大值 【详解】(1)不共线,以

15、它们为基底, 由已知,又与共线, 所以存在实数,使得, 即,解得; (2)等腰梯形中,,,则, 设,, 则,, 所以时,取得最大值12 【点睛】关键点点睛:本题考查向量的共线,向量的数量积,解题关键是以为基底,其它向量都用基底表示,然后求解计算 19、(1),; (2), 【解析】(1)化简f(x)解析式,利用正弦函数的图像特性即可求其最大值和最小值; (2)根据正弦型函数为偶函数可知,,据此即可求出,再根据正弦函数单调性即可求g(x)的单调增区间. 【小问1详解】 , ∵,, ∴, ∴函数最大值为,最小值为 【小问2详解】 , ∵该函数为偶函数

16、∴,得, 又∵,∴k取0,, ∴, 令,解得, 从而得到其增区间为 20、(1);(2) 【解析】(1)设,根据向量相等的坐标表示可得答案; (2)设,建立方程,解之可得答案 【详解】解:(1)设,由点,所以, 又,所以,解得所以点,所以; (2)若点,所以,, 设,即,解得 所以用基底表示 21、(1) (2) 【解析】(1)分在第1个过程中,1或2位质检员检验结果为合格两种情况讨论,根据相互独立事件及互斥事件的概率公式计算可得; (2)首先求出在第1个过程中,3位质检员检验结果均为不合格的概率,再求出产品需要进行第2个过程,在第2个过程中,产品不可以出厂的概率,最后根据互斥事件的概率公式计算可得; 【小问1详解】 解:记事件A为“产品需要进行第2个过程” 在第1个过程中,1位质检员检验结果为合格的概率, 在第1个过程中,2位质检员检验结果为合格的概率, 故 【小问2详解】 解:记事件B为“产品不可以出厂” 在第1个过程中,3位质检员检验结果均为不合格概率, 产品需要进行第2个过程,在第2个过程中,产品不可以出厂的概率, 故

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服