ImageVerifierCode 换一换
格式:DOC , 页数:14 ,大小:603KB ,
资源ID:12794592      下载积分:12.58 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/12794592.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(江苏省南通第一中学2025-2026学年数学高一第一学期期末调研试题含解析.doc)为本站上传会员【zj****8】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

江苏省南通第一中学2025-2026学年数学高一第一学期期末调研试题含解析.doc

1、江苏省南通第一中学2025-2026学年数学高一第一学期期末调研试题 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。 2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。 3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效

2、 4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.已知函数在上单调递减,则实数 a的取值范围是 A. B. C. D. 2.实数,,的大小关系正确的是(  ) A. B. C. D. 3.设,则“”是“”的() A.充要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分也不必要条件 4.如图,四面体中,,且,分别是的中点,则与所成的角为 A. B. C. D. 5.若,,则的值为   A. B. C. D.

3、6.设,则的值为 A. B. C. D. 7.函数的图象如图所示,则函数y的表达式是() A. B. C. D. 8.若∃x∈[0,3],使得不等式x2﹣2x+a≥0成立,则实数a的取值范围是( ) A.﹣3≤a≤0 B.a≥0 C.a≥1 D.a≥﹣3 9.若扇形圆心角的弧度数为,且扇形弧所对的弦长也是,则这个扇形的面积为 A. B. C. D. 10.我国古代《九章算术》里,记载了一个“商功”的例子:今有刍童,下广二丈,袤三丈,上广三丈,袤四丈,高三丈.问积几何?其意思是:今有上下底面皆为长方形的草垛(如图所示),下底宽2丈,长3丈;上底宽3丈,长4丈;高

4、3丈.问它的体积是多少?该书提供的算法是:上底长的2倍与下底长的和与上底宽相乘,同样下底长的2倍与上底长的和与下底宽相乘,将两次运算结果相加,再乘以高,最后除以6.则这个问题中的刍童的体积为 A.13.25立方丈 B.26.5立方丈 C.53立方丈 D.106立方丈 二、填空题:本大题共6小题,每小题5分,共30分。 11.已知,且,则______ 12.已知向量,且,则_______. 13.利用随机数表法对一个容量为90,编号为00,01,02,…,89的产品进行抽样检验,抽取一个容量为10的样本,若选定从第2行第3列的数开始向右读数(下面摘取了随机数表中的第1行至第5行)

5、根据下图,读出的第3个数是___________. 14.若函数满足,则______ 15.已知函数是定义在上的奇函数,当时,,则的值为______ 16.若正数,满足,则________. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.已知函数 (1)求 在上的增区间 (2)求在闭区间上的最大值和最小值 18.已知的图像关于坐标原点对称. (1)求的值,并求出函数的零点; (2)若存在,使不等式成立,求实数取值范围. 19.某品牌手机公司的年固定成本为50万元,每生产1万部手机需增加投入20万元,该公司一年内生产万部手机并

6、全部销售完当年销售量不超过40万部时,销售1万部手机的收入万元;当年销售量超过40万部时,销售1万部手机的收入万元 (1)写出年利润万元关于年销售量万部的函数解析式; (2)年销售量为多少万部时,利润最大,并求出最大利润. 20.已知函数,,当时,恒有 (1)求的表达式及定义域; (2)若方程有解,求实数的取值范围; (3)若方程的解集为,求实数的取值范围 21.如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,∠BCD=60°,AB=2AD,PD⊥平面ABCD,点M为PC的中点 (1)求证:PA∥平面BMD; (2)求证:AD⊥PB; (3)若AB=PD=2,求点A

7、到平面BMD的距离 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、C 【解析】由函数单调性的定义,若函数在上单调递减,可以得到函数在每一个子区间上都是单调递减的,且当时,,求解即可 【详解】若函数在上单调递减,则,解得. 故选C. 【点睛】本题考查分段函数的单调性.严格根据定义解答,本题保证随的增大而减小,故解答本题的关键是的最小值大于等于的最大值 2、B 【解析】根据指数函数、对数函数的单调性分别判断的取值范围,即可得结果. 【详解】由对数函数的单调性可得, 根据指数函数的单调性可得,

8、 即, ,故选B. 【点睛】本题主要考查对数函数的性质、指数函数的单调性及比较大小问题,属于中档题.解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间 );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用. 3、C 【解析】根据一元二次不等式的解法,结合充分性、必要性的定义进行判断即可. 【详解】由, 由不一定能推出,但是由一定能推出, 所以“”是“”的必要不充分条件, 故选:C 4、B 【解析】设为中点,由中位线可知,所以就是所求两条之间所成的角,且三角形为等腰直角三角形你给,所以. 考点:空间两条直线所成的角

9、 【思路点晴】求异面直线所成的角常采用“平移线段法”,平移的方法一般有三种类型:利用图中已有的平行线平移;利 用特殊点(线段的端点或中点)作平行线平移;补形平移.计算异面直线所成的角通常放在三角形中进行.平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决 5、A 【解析】由两角差的正切公式展开计算可得 【详解】解:,,则, 故选A 【点睛】本题考查两角差的正切公式:,对应还应该掌握两角和的正切公式,及正弦余弦公式.本题是基础 6、A 【解析】先利用诱导公式以及同角的三角函数关系化简,再根据特殊角的三角函数值代值计算 【详解】解:

10、由题意得,, 则, 故选:A 【点睛】本题主要考查诱导公式和特殊角的三角函数值,考查同角的平方关系,属于基础题 7、A 【解析】由函数的最大、最小值,算出和,根据函数图像算出周期,利用周期公式算出.再由当时函数有最大值,建立关于的等式解出,即可得到函数的表达式. 【详解】函数的最大值为,最小值为, , , 又函数的周期, ,得. 可得函数的表达式为, 当时,函数有最大值, ,得, 可得,结合, 取得, 函数的表达式是. 故选:. 【点睛】本题给出正弦型三角函数的图象,求它的解析式.着重考查了三角函数的周期公式、三角函数的图象的变换与解析式的求法等知识属于中档

11、题. 8、D 【解析】等价于二次函数的最大值不小于零,即可求出答案. 【详解】设, ,使得不等式成立, 须,即,或, 解得. 故选:D 【点睛】本题考查特称命题成立求参数的问题,等价转化是解题的关键,属于基础题. 9、A 【解析】分析:求出扇形的半径,然后利用扇形的面积公式求解即可. 详解:由题意得扇形的半径为: 又由扇形面积公式得该扇形的面积为:. 故选:A. 点睛:本题是基础题,考查扇形的半径的求法、面积的求法,考查计算能力,注意扇形面积公式的应用. 10、B 【解析】根据题目给出的体积计算方法,将几何体已知数据代入计算,求得几何体体积 【详解】由题,刍童

12、的体积为立方丈 【点睛】本题考查几何体体积的计算,正确利用题目条件,弄清楚问题本质是关键 二、填空题:本大题共6小题,每小题5分,共30分。 11、## 【解析】由,应用诱导公式,结合已知角的范围及正弦值求,即可得解. 【详解】由题设,, 又,即,且, 所以,故. 故答案为: 12、2 【解析】由题意可得解得. 【名师点睛】(1)向量平行:,,. (2)向量垂直:. (3)向量的运算:. 13、75 【解析】根据随机数表法进行抽样即可. 【详解】从随机数表的第2行第3列的数开始向右读数,第一个编号为62,符合;第二个编号为38,符合;第三个编号为97,大于8

13、9,应舍去;下一个编号为75,符合. 所以读出的第3个数是:75. 故答案为:75. 14、 【解析】根据题意,令,结合指数幂的运算,即可求解. 【详解】由题意,函数满足,令,可得. 故答案为:. 15、1 【解析】根据题意,由函数在(﹣∞,0)上的解析式可得f(﹣1)的值,又由函数为奇函数可得f(1)=﹣f(﹣1),即可得答案 【详解】根据题意,当x∈(﹣∞,0)时,f(x)=2x3+x2, 则f(﹣1)=2×(﹣1)3+(﹣1)2=﹣1, 又由函数奇函数, 则f(1)=﹣f(﹣1)=1; 故答案为1 【点睛】本题考查函数奇偶性的应用,注意利用奇偶性明确f(1)与

14、f(﹣1)的关系 16、108 【解析】设,反解,结合指数运算和对数运算,即可求得结果. 【详解】可设,则,,; 所以. 故答案为:108. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(1), (2)最大值为,的最小值为 【解析】(1)由正弦型函数的性质,应用整体代入法有时单调递增求增区间; (2)由已知区间确定的区间,进而求的最大值和最小值 【小问1详解】 令,得, ∴单调递增区间为, 由,可令得.令得, 所以在上的增区间为, 【小问2详解】 , . 即在区间上的最大值为,最小值为. 18、(1

15、2) 【解析】(1)由题设知是上的奇函数.所以,得(检验符合),又方程可以化简为,从而.(2)不等式 有解等价于在上有解,所以考虑在上的最小值,利用换元法可求该最小值为,故. (1)由题意知是上的奇函数.所以,得.,,由,可得,所以,,即的零点为. (2),由题设知在内能成立,即不等式在上能成立.即在内能成立,令,则在上能成立,只需,令,对称轴,则在上单调递增.∴,所以. .点睛:如果上的奇函数中含有一个参数,那么我们可以利用来求参数的大小.又不等式的有解问题可以转化为函数的最值问题来处理. 19、(1);(2)年销售量为45万部时,最大利润为7150万元. 【解析】(1)依

16、题意,分和两段分别求利润=收入-成本,即得结果; (2)分和两段分别求函数的最大值,再比较两个最大值的大小,即得最大利润. 【详解】解:(1)依题意,生产万部手机,成本是(万元), 故利润,而, 故, 整理得,; (2)时,,开口向下的抛物线,在时,利润最大值为; 时,, 其中,在上单调递减,在上单调递增,故 时,取得最小值, 故在 时,y取得最大值 而, 故年销售量为45万部时,利润最大,最大利润为7150万元. 【点睛】方法点睛: 分段函数求最值时,需要每一段均研究最值,再比较出最终的最值. 20、(1),;(2);(3) 【解析】(1)由已知中函数,,当时

17、恒有,我们可以构造一个关于方程组,解方程组求出的值,进而得到的表达式; (2)转化为,解得,可求出满足条件的实数的取值范围. (3)根据对数的运算性质,转化为一个关于的分式方程组,进而根据方程 的解集为,则方程组至少一个方程无解或两个方程的解集的交集为空集,分类讨论后,即可得到答案. 【详解】(1)∵当时, , 即, 即, 整理得恒成立,∴, 又,即,从而 ∴, ∵,∴,或, ∴的定义域为 (2)方程有解,即, ∴,∴,∴, ∴,或, 解得或, ∴实数的取值范围 (3)方程的解集为, ∴,∴, ∴, 方程的解集为,故有两种情况: ①方程无解,即,得

18、 ②方程有解, 两根均在内,, 则解得 综合①②得实数的取值范围是 【点睛】关键点点睛:函数与方程、对数函数的单调性解不等式以及一元二次方程根的分布,综合性比较强,根据转化思想,不断转化是解题的关键,考查了分类讨论的思想,属于难题. 21、(1)详见解析;(2)详见解析;(3). 【解析】(1)设AC和BD交于点O,MO为三角形PAC的中位线可得MO∥PA,再利用直线和平面平行的判定定理,证得结论 (2)由PD⊥平面ABCD,可得PD⊥AD,再由cos∠BAD,证得 AD⊥BD,可证AD⊥平面PBD,从而证得结论 (3)点A到平面BMD的距离等于点C到平面BMD的距离h,求

19、出MN、MO的值,利用等体积法求得点C到平面MBD的距离h 【详解】(1)证明:设AC和BD交于点O,则由底面ABCD是平行四边形可得O为AC的中点 由于点M为PC的中点,故MO为三角形PAC的中位线,故MO∥PA.再由PA不在平面BMD内,而MO在平面BMD内, 故有PA∥平面BMD (2)由PD⊥平面ABCD,可得PD⊥AD,平行四边形ABCD中,∵∠BCD=60°,AB=2AD, ∴cos∠BADcos60°,∴AD⊥BD 这样,AD垂直于平面PBD内的两条相交直线,故AD⊥平面PBD,∴AD⊥PB (3)若AB=PD=2,则AD=1,BD=AB•sin∠BAD=2, 由

20、于平面BMD经过AC的中点,故点A到平面BMD的距离等于点C到平面BMD的距离 取CD得中点N,则MN⊥平面ABCD,且MNPD=1 设点C到平面MBD的距离为h,则h为所求 由AD⊥PB 可得BC⊥PB,故三角形PBC为直角三角形 由于点M为PC的中点,利用直角三角形斜边的中线等于斜边的一半,可得MD=MB,故三角形MBD为等腰三角形, 故MO⊥BD 由于PA,∴MO 由VM﹣BCD=VC﹣MBD 可得,•()•MN•(BD×MO )×h, 故有 ()×1•()•h, 解得h 【点睛】本题主要考查直线和平面平行的判定定理,直线和平面垂直的性质,用等体积法求点到平面的距离,体现了数形结合和等价转化的数学思想,属于中档题

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服