ImageVerifierCode 换一换
格式:DOC , 页数:14 ,大小:1.28MB ,
资源ID:12794256      下载积分:12.58 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/12794256.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(2025年北京市第十五中学数学高一上期末达标测试试题含解析.doc)为本站上传会员【cg****1】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2025年北京市第十五中学数学高一上期末达标测试试题含解析.doc

1、2025年北京市第十五中学数学高一上期末达标测试试题 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.对于函数,,“”是“的图象既关于原点对称又关于轴对称”的() A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既

2、不充分也不必要条件 2. = A.- B. C.- D. 3.已知平面直角坐标系中,点,,,、、,,是线段AB的九等分点,则( ) A.45 B.50 C.90 D.100 4.若函数图象上所有点的横坐标向右平移个单位,纵坐标保持不变,得到的函数图象关于轴对称,则的最小值为() A. B. C. D. 5.函数的值域为( ) A. B. C. D. 6.已知函数的定义域是且满足如果对于,都有不等式的解集为 A. B. C. D. 7.已知函数f(x)= 若f(f(0))=4a,则实数a等于 A. B. C.2 D.9 8.设点分别是空间四边形的

3、边的中点,且,,,则异面直线与所成角的正弦值是( ) A. B. C. D. 9.已知定义在上的偶函数,且当时,单调递减,则关于x的不等式的解集是() A. B. C. D. 10.使幂函数为偶函数,且在上是减函数的值为(  ) A. B. C. D.2 二、填空题:本大题共6小题,每小题5分,共30分。 11.已知平面向量,,,,,则的值是______ 12.已知是定义在R上的奇函数,当时,,则当时,______ 13.的值为__________ 14.已知,写出一个满足条件的的值:______ 15.已知,且的终边上一点P的坐标为,则=______ 16

4、.请写出一个最小正周期为,且在上单调递增的函数__________ 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.对于函数,若在定义域内存在实数,满足,则称“局部中心函数”. (1)已知二次函数(),试判断是否为“局部中心函数”,并说明理由; (2)若是定义域为上的“局部中心函数”,求实数的取值范围. 18.如图,在三棱柱ABC-A1B1C1中,△ABC与△A1B1C1都为正三角形且AA1⊥面ABC,F、F1分别是AC,A1C1的中点.求证: (1)平面AB1F1∥平面C1BF; (2)平面AB1F1⊥平面ACC1A1. 19.已知

5、在同一个平面直角坐标系中的坐标分别为、、 (1)若,求角的值; (2)当时,求的值 20.已知函数f(x)= (1)判断函数f(x)的奇偶性; (2)判断并证明函数f(x)的单调性; (3)解不等式:f(x2-2x)+f(3x-2)<0; 21.已知角的终边经过点,试求: (1)tan的值; (2)的值. 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、C 【解析】由函数奇偶性的定义求出的解析式,可得出结论. 【详解】若函数的定义域为,的图象既关于原点对称又关于轴对称, 则,可得,

6、 因此,“”是“的图象既关于原点对称又关于轴对称”的充要条件 故选:C. 2、A 【解析】. 考点:诱导公式 3、B 【解析】利用向量的加法以及数乘运算可得,再由向量模的坐标表示即可求解. 【详解】 , ∴ 故选:B. 4、B 【解析】由题设可得,根据已知对称性及余弦函数的性质可得,即可求的最小值. 【详解】由题设,关于轴对称, ∴且,则,,又, ∴的最小值为. 故选:B. 5、D 【解析】根据分段函数的解析式,结合基本初等函数的单调,分别求得两段上函数的值域,进而求得函数的值域. 【详解】当时,单调递减,此时函数的值域为; 当时,在

7、上单调递增,在上单调递减, 此时函数的最大值为,最小值为,此时值域为, 综上可得,函数值域为. 故选:D. 6、D 【解析】令x=,y=1,则有f()=f()+f(1), 故f(1)=0; 令x=,y=2,则有f(1)=f()+f(2), 解得,f(2)=﹣1, 令x=y=2,则有f(4)=f(2)+f(2)=﹣2; ∵对于0<x<y,都有f(x)>f(y), ∴函数f(x)是定义在(0,+∞)上的减函数, 故f(﹣x)+f(3﹣x)≥﹣2可化为f(﹣x(3﹣x))≥f(4), 故, 解得,﹣1≤x<0.∴不等式的解集为 故选D 点睛:本题重点考查了抽象函数的性

8、质及应用,的原型函数为的原型函数为,. 7、C 【解析】 ,选C. 点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围. 8、C 【解析】取BD中点G,连结EG、FG ∵△ABD中,E、G分别为AB、BD的中点 ∴EG∥AD且EG=AD=4, 同理可得:FG∥BC且FG=BC=3, ∴∠FEG(或其补角)就是异面直线AD与EF所成的角

9、∵△FGE中,EF=5,EG=4,FG=3,∴EF2=25=EG2+FG2,得 故答案为C. 9、D 【解析】由偶函数的性质求得,利用偶函数的性质化不等式中自变量到上,然后由单调性转化求解 【详解】解:由题意,,的定义域,时,递减, 又是偶函数,因此不等式转化为, ,,解得 故选:D 10、B 【解析】根据幂函数的性质确定正确选项. 【详解】A选项,是奇函数,不符合题意. B选项,为偶函数,且在上是减函数,符合题意. C选项,是非奇非偶函数,不符合题意. D选项,,在上递增,不符合题意. 故选:B 二、填空题:本大题共6小题,每小题5分,共30分。 11、

10、 【解析】根据向量垂直向量数量积等于,解得α·β=,再利用向量模的求法,将式子平方即可求解. 【详解】由得, 所以, 所以 所以. 故答案为: 12、 【解析】根据奇函数的性质求解 【详解】时,,是奇函数, 此时 故答案为: 13、 【解析】根据特殊角的三角函数值与对数的运算性质计算可得; 【详解】解: 故答案为: 14、(答案不唯一) 【解析】利用,可得,,计算即可得出结果. 【详解】因为,所以, 则,或, 故答案为:(答案不唯一) 15、 【解析】先求解,判断的终边在第四象限,计算,结合,即得解 【详解】由题意, 故点,故终边在第四象限 且

11、又 故 故答案为: 16、或(不唯一). 【解析】根据函数最小正周期为,可构造正弦型、余弦型或者正切型函数,再结合在上单调递增,构造即可. 【详解】解:根据函数最小正周期为,可构造正弦型、余弦型或者正切型函数,再结合在上单调递增,构造即可, 如或满足题意 故答案为:或(不唯一). 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、 (1) 为“局部中心函数”,理由详见解题过程;(2) 【解析】(1)判断是否为“局部中心函数”,即判断方程是否有解,若有解,则说明是“局部中心函数”,否则说明不是“局部中心函数”; (2)条件是定义域

12、为上的“局部中心函数”可转化为方程有解,再利用整体思路得出结果. 【详解】解:(1)由题意,(), 所以, , 当时, 解得:, 由于,所以, 所以为“局部中心函数”. (2)因为是定义域为上的“局部中心函数”, 所以方程有解, 即在上有解, 整理得:, 令,, 故题意转化为在上有解, 设函数, 当时,在上有解, 即, 解得:; 当时, 则需要满足才能使在上有解, 解得:, 综上:. 【点睛】本题考查了二次函数的图象与性质、指数函数的图象与性质,考查了整体换元的思想方法,还考查了学生理解新定义的能力. 18、(1)证明见解析;(2)证明见解析.

13、 【解析】(1)由棱柱的性质及中点得B1F1∥BF,AF1∥C1F.,从而有线面平行,再有面面平行; (2)先证明B1F1⊥平面ACC1A1,然后可得面面垂直 【详解】证明:(1)在正三棱柱ABC-A1B1C1中,连接, ∵F、F1分别是AC、A1C1的中点, ,,, ∴是平行四边形,是平行四边形, ∴B1F1∥BF,AF1∥C1F.  平面,平面,∴平面, 同理平面, 又∵B1F1∩AF1=F1,平面,平面, ∴平面AB1F1∥平面C1BF. (2)在三棱柱ABC-A1B1C1中,AA1⊥平面A1B1C1,平面,∴B1F1⊥AA1. 又是等边三角形,是中点,∴B

14、1F1⊥A1C1,而A1C1∩AA1=A1, ∴B1F1⊥平面ACC1A1,而B1F1⊂平面AB1F1, ∴平面AB1F1⊥平面ACC1A1. 【点睛】本题考查证明面面平行和面面垂直,掌握面面平行和面面垂直的判定定理是解题关键 19、(1) (2)- 【解析】⑴首先可以通过、、写出和,然后通过化简可得,最后通过即可得出角的值; ⑵首先可通过化简得到,再通过化简得到,最后对化简即可得到的值 【详解】⑴已知、、, 所以,, 因为, 所以 化简得,即, 因为,所以; ⑵由可得, 化简得,, 所以, 所以,综上所述, 【点睛】本题考查了三角函数以及向量的相关性质,主要

15、考查了三角恒等变换的相关性质以及向量的运算的相关性质,考查了计算能力,考查了化归与转化思想,锻炼了学生对于公式的使用,是难题 20、(1)奇函数(2)单调增函数,证明见解析 (3) 【解析】(1)按照奇函数的定义判断即可; (2)按照单调性的定义判断证明即可; (3)由单调递增解不等式即可. 【小问1详解】 易知函数定义域R, 所以函数为奇函数. 【小问2详解】 设任意x1,x2∈R且x1

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服