ImageVerifierCode 换一换
格式:DOC , 页数:14 ,大小:551KB ,
资源ID:12794250      下载积分:12.58 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/12794250.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(贵州省长顺县民族高级中学2026届高一上数学期末检测模拟试题含解析.doc)为本站上传会员【cg****1】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

贵州省长顺县民族高级中学2026届高一上数学期末检测模拟试题含解析.doc

1、贵州省长顺县民族高级中学2026届高一上数学期末检测模拟试题 注意事项: 1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。 2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。 3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。 4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.若直线经过两点,且倾斜

2、角为45°,则m的值为 A. B.1 C.2 D. 2.已知,则x等于   A. B. C. D. 3.已知集合,则() A. B. C. D.R 4.命题“”的否定是( ) A. B. C. D. 5.在梯形中,,,是边上的点,且.若记,,则() A. B. C. D. 6.下列函数中,最小正周期为的奇函数是() A. B. C. D. 7.已知为圆的两条互相垂直的弦,且垂足为,则四边形面积的最大值为( ) A.10 B.13 C.15 D.20 8.若,,则() A. B. C. D. 9.若函数的定义域是,则函数的定义域是()

3、 A. B. C. D. 10.关于x的一元二次不等式对于一切实数x都成立,则实数k满足() A. B. C. D. 二、填空题:本大题共6小题,每小题5分,共30分。 11.如图,若角的终边与单位圆交于点,则________,________ 12.已知函数,,则它的单调递增区间为______ 13.下列说法中,所有正确说法的序号是_____ 终边落在轴上的角的集合是;  函数图象与轴的一个交点是; 函数在第一象限是增函数; 若,则 14.若直线上存在满足以下条件的点:过点作圆的两条切线(切点分别为),四边形的面积等于,则实数的取值范围是_______ 15

4、.已知幂函数的图象关于轴对称,且在上单调递减,则满足的的取值范围为________. 16.如果,且,则化简为_____. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.已知定义域为的函数是奇函数. (1)求实数的值; (2)判断的单调性并用定义证明; (3)已知不等式恒成立,求实数的取值范围. 18.已知函数, (1)求函数的最大值及取得最大值时的值; (2)若方程在上的解为,,求的值 19.某厂生产某种产品的年固定成本为万元,每生产千件,需另投入成本为.当年产量不足千件时,(万元);当年产量不小于千件时,(万元).通过市场分析,

5、若每件售价为元时,该厂年内生产的商品能全部售完.(利润销售收入总成本) (1)写出年利润(万元)关于年产量(千件)的函数解析式; (2)年产量为多少万件时,该厂在这一商品的生产中所获利润最大? 20.已知集合,集合 (1)若“”是“”的充分条件,求实数的取值范围; (2)若,求实数的取值范围. 21.已知,且在第三象限, (1)和 (2). 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、A 【解析】由两点坐标求出直线的斜率,再由斜率等于倾斜角的正切值列出方程求得的值. 【详解】因为经过两点,

6、的直线的倾斜角为45°,∴,解得,故选A 【点睛】本题主要考查了直线的斜率与倾斜角的关系,属于基础题. 2、A 【解析】把已知等式变形,可得,进一步得到,则x值可求 【详解】由题意,可知,可得,即,所以,解得 故选A 【点睛】本题主要考查了有理指数幂与根式的运算,其中解答中熟记有理指数幂和根式的运算性质,合理运算是解答的关键,着重考查了运算与求解能力,属于基础题. 3、D 【解析】求出集合A,再利用并集的定义直接计算作答. 【详解】依题意,,而, 所以 故选:D 4、D 【解析】直接利用全称命题的否定为特称命题进行求解. 【详解】命题“”为全称命题, 按照改量词否

7、结论的法则, 所以否定为:, 故选:D 5、A 【解析】作出图形,由向量加法的三角形法则得出可得出答案. 【详解】如下图所示: 由题意可得, 由向量加法的三角形法则可得. 故选:A. 【点睛】本题考查利用基底来表示向量,涉及平面向量加法的三角形法则的应用,考查数形结合思想的应用,属于基础题. 6、C 【解析】根据题意,分别判断四个选项中的函数的最小正周期和奇偶性即可,其中A、C选项中的函数先要用诱导公式化简. 【详解】A选项:,其定义域为,, 为偶函数,其最小正周期为,故A错误. B选项:,其最小正周期为,函数定义域为,, 函数不是奇函数,故B错误. C选项

8、其定义域为,, 函数为奇函数,其最小正周期为,故C正确. D选项:函数定义域为,, 函数为偶函数,其最小正周期,故D错误. 故选:C. 7、B 【解析】 如图,作OP⊥AC于P,OQ⊥BD于Q, 则|OP|2+|OQ|2=|OM|2=5,∴|AC|2+|BD|2=4(9-|OP|2)+4(9-|OQ|2)=52 则|AC|·|BD|=, 当时,|AC|·|BD|有最大值26,此时S四边形ABCD=|AC|·|BD|=×26=13, ∴四边形ABCD面积的最大值为13 故选B 点睛:直线与圆的位置关系常用处理方法: (1)直线与圆相切处理时要利用圆心与切点连线垂直,

9、构建直角三角形,进而利用勾股定理可以建立等量关系; (2)直线与圆相交,利用垂径定理也可以构建直角三角形; (3)直线与圆相离时,当过圆心作直线垂线时长度最小 8、A 【解析】由不等式的性质判断A、B、D的正误,应用特殊值法的情况判断C的正误. 【详解】由,则,A正确;,B错误;,D错误. 当时,,C错误; 故选:A. 9、C 【解析】由题可列出,可求出 【详解】的定义域是, 在中,,解得, 故的定义域为. 故选:C. 10、C 【解析】只需要满足条件即可. 【详解】由题意,解得. 故选:C. 二、填空题:本大题共6小题,每小题5分,共30分。 11、

10、 ①.##0.8 ②. 【解析】根据单位圆中的勾股定理和点所在象限求出,然后根据三角函数的定义求出即可 【详解】如图所示,点位于第一象限,则有:,且 解得: (其中) 故答案为:; 12、(区间写成半开半闭或闭区间都对); 【解析】由得 因为,所以单调递增区间为 13、 【解析】取值验证可判断;直接验证可判断;根据第一象限的概念可判断;由诱导公式化简可判断. 【详解】中,取时,的终边在x轴上,故错误; 中,当时,,故正确; 中,第一象限角的集合为,显然在该范围内函数不单调; 中,因为,所以, 所以,故正确. 故答案为:②④ 14、 【解析】通过画

11、出图形,可计算出圆心到直线的最短距离,建立不等式即可得到的取值范围. 【详解】作出图形,由题意可知,,此时,四边形即为,而,故,勾股定理可知,而要是得存在点P满足该条件,只需O到直线的距离不大于即可,即,所以,故的取值范围是. 【点睛】本题主要考查直线与圆的位置关系,点到直线的距离公式,意在考查学生的转化能力,计算能力,分析能力,难度中等. 15、 【解析】根据幂函数的单调性和奇偶性得到,代入不等式得到,根据函数的单调性解得答案. 【详解】幂函数在上单调递减,故,解得. ,故,,. 当时 ,不关于轴对称,舍去; 当时 ,关于轴对称,满足; 当时 ,不关于轴对称,舍去;

12、故,,函数在和上单调递减, 故或或,解得或. 故答案为: 16、 【解析】由,且,得到是第二象限角,由此能化简 【详解】解:∵,且,∴是第二象限角, ∴ 故答案为: 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(1);(2)减函数,证明见解析;(3) . 【解析】(1)根据可求的值,注意检验. (2)利用增函数的定义可证明在上是减函数. (3)利用函数的奇偶性和单调性可把原不等式化为,利用对数函数的性质可求的取值范围. 【详解】(1)是上的奇函数,,得, 此时,,故为奇函数, 所以. (2)为减函数,证明如下:

13、设是上任意两个实数,且, , ,,即,,, ,即,在上是减函数. (3)不等式恒成立,. 是奇函数,,即不等式恒成立 又在上是减函数,不等式恒成立, 当时,得,. 当时,得,. 综上,实数的取值范围是. 【点睛】本题考查了函数的奇偶性与单调性,考查了不等式恒成立问题,考查了应用对数函数单调性解与对数有关的不等式,涉及了指数函数与对数函数的图象与性质,体现了转化思想在解题中的运用 . 18、(1)当时,函数取得最大值为;(2). 【解析】(1)利用同角三角函数的平方关系化简,再利用换元法即可求最值以及取得最值时的值; (2)求出函数的对称轴,得到和的关系,利用诱导公式化

14、简可得答案. 【详解】(1), 令, 可得,对称轴为 ,开口向下, 所以在上单调递增, 所以当, 即,时,, 所以当时,函数取得最大值为; (2)令,可得, 当时,是的对称轴, 因为方程在上的解为,, ,, 且,所以,所以, 所以 , 所以的值为. 19、(1);(2)万件. 【解析】(1)由题意,分别写出与对应的函数解析式,即可得分段函数解析式;(2)当时,利用二次函数的性质求解最大值,当时,利用基本不等式求解最大值,比较之后得整个范围的最大值. 【详解】解:(1)当,时, 当,时, ∴ (2)当,时,, ∴当时,取得最大值(万元) 当,

15、时, 当且仅当,即时等号成立. 即时,取得最大值万元 综上,所以即生产量为万件时,该厂在这一商品的生产中所获利润最大为万元 【点睛】与函数相关的应用题在求解的过程中需要注意函数模型的选择,注意分段函数在应用题中的运用,求解最大值时注意利用二次函数的性质以及基本不等式求解. 20、(1); (2). 【解析】(1)由已知可得,可得出关于实数的不等式组,由此可解得实数的取值范围; (2)分、两种情况讨论,根据可得出关于实数的不等式(组),综合可得出实数的取值范围. 【小问1详解】 解:由已知得,故有, 解得,故的取值范围为. 【小问2详解】 解:当时,则,解得; 当时,则或,解得. ∴的取值范围为. 21、(1), (2) 【解析】(1)利用同角三角函数关系求解即可. (2)利用同角三角函数关系和诱导公式求解即可. 【小问1详解】 已知,且在第三象限, 所以, 【小问2详解】 原式

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服