ImageVerifierCode 换一换
格式:DOC , 页数:14 ,大小:706.50KB ,
资源ID:12794115      下载积分:12.58 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/12794115.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(陕西省宝鸡市金台高级中学2026届数学高一第一学期期末联考试题含解析.doc)为本站上传会员【zh****1】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

陕西省宝鸡市金台高级中学2026届数学高一第一学期期末联考试题含解析.doc

1、陕西省宝鸡市金台高级中学2026届数学高一第一学期期末联考试题 考生须知: 1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。 2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。 3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.设,则 A. B.0 C.1 D. 2.已知直线:,:,:,若且,则的值为   A. B.10

2、C. D.2 3.角的终边经过点,则的值为() A. B. C. D. 4.函数是 A.周期为的奇函数 B.周期为的奇函数 C.周期为的偶函数 D.周期为的偶函数 5.已知方程的两根分别为、,且、,则 A. B.或 C.或 D. 6.若,则的值为() A. B. C.或 D. 7.明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地,送行两步恰竿齐,五尺板高离地……”某教师根据这首词设计一题:如图,已知,,则弧的长() A. B. C. D. 8.要证明命题“所有实数的平方都是正数”是假命题,只需()

3、 A.证明所有实数的平方都不是正数 B.证明平方是正数的实数有无限多个 C.至少找到一个实数,其平方是正数 D.至少找到一个实数,其平方不是正数 9.已知,,则( ) A. B. C. D. 10.已知直线,平面满足,则直线与直线的位置关系是 A.平行 B.相交或异面 C.异面 D.平行或异面 二、填空题:本大题共6小题,每小题5分,共30分。 11.已知向量满足,且,则与的夹角为_______ 12.函数的定义域是____________. 13.已知集合,则的元素个数为___________. 14.已知函数(为常数)是奇函数. (1)求的值与函数的定义

4、域. (2)若当时,恒成立.求实数的取值范围. 15.已知函数,给出下列四个命题: ①函数是周期函数; ②函数的图象关于点成中心对称; ③函数的图象关于直线成轴对称; ④函数在区间上单调递增. 其中,所有正确命题的序号是___________. 16.已知函数在上单调递减,则实数的取值范围是______. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.已知如图,在直三棱柱中,,且,是的中点,是的中点,点在直线上. (1)若为中点,求证:平面; (2)证明: 18.设函数,. (1)若方程在区间上有解,求a的取值范围.

5、2)设,若对任意的,都有,求a的取值范围. 19.已知角的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边经过点. (1)求的值; (2)若第一象限角满足,求的值. 20.已知函数)的最大值为2 (1)求m的值; (2)求使成立的x的取值集合; (3)将的图象上所有点的横坐标变为原来的)倍(纵坐标不变),得到函数的图象,若是的一个零点,求t的最大值 21.(1)已知,则; (2)已知角的终边上有一点的坐标是,其中,求 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、B 【解析】详解】

6、故选 2、C 【解析】由且,列出方程,求得,,解得的值,即可求解 【详解】由题意,直线:,:,:, 因为且,所以,且, 解得,,所以 故选C 【点睛】本题主要考查了两直线的位置关系的应用,其中解答中熟记两直线的位置关系,列出方程求解的值是解答的关键,着重考查了推理与计算能力,属于基础题 3、D 【解析】根据三角函数定义求解即可. 【详解】因为角的终边经过点, 所以,, 所以. 故选:D 4、A 【解析】对于函数y=sin,T=4π,且sin(-)=-sin.故选A 5、D 【解析】将韦达定理的形式代入两角和差正切公式可求得,根据韦达定理可判断出两角的正切值均小

7、于零,从而可得,进而求得,结合正切值求得结果. 【详解】由韦达定理可知:, 又, , 本题正确选项: 【点睛】本题考查根据三角函数值求角的问题,涉及到两角和差正切公式的应用,易错点是忽略了两个角所处的范围,从而造成增根出现. 6、A 【解析】分别令和,根据集合中元素的互异性可确定结果. 【详解】若,则,不符合集合元素的互异性; 若,则或(舍),此时,符合题意; 综上所述:. 故选:A. 7、C 【解析】求出长后可得,再由弧长公式计算可得 【详解】由题意,解得,所以,, 所以弧的长为 故选:C 8、D 【解析】全称命题是假命题,则其否定一定是真命题,判

8、断选项. 【详解】命题“所有实数的平方都是正数”是全称命题,若其为假命题,那么命题的否定是真命题,所以只需“至少找到一个实数,其平方不是正数. 故选:D 9、B 【解析】 应用同角关系可求得,再由余弦二倍角公式计算. 【详解】因,所以, 所以, 所以. 故选:B. 【点睛】本题考查同角间的三角函数关系,考查余弦的二倍角公式.求值时要注意角的取值范围,以确定函数值的正负. 10、D 【解析】∵a∥α,∴a与α没有公共点,b⊂α,∴a、b没有公共点, ∴a、b平行或异面. 故选D 二、填空题:本大题共6小题,每小题5分,共30分。 11、## 【解析】根据平面

9、向量的夹角公式即可求出 【详解】设与的夹角为,由夹角余弦公式,解得 故答案为: 12、 【解析】利用对数函数的定义域列出不等式组即可求解. 【详解】由题意可得,解得, 所以函数的定义域为. 故答案为: 13、5 【解析】直接求出集合A、B,再求出,即可得到答案. 【详解】因为集合,集合, 所以, 所以的元素个数为5. 故答案为:5. 14、(1),定义域为或;(2). 【解析】(1)根据函数是奇函数,得到,求出,再解不等式,即可求出定义域; (2)先由题意,根据对数函数的性质,求出的最小值,即可得出结果. 【详解】(1)因为函数是奇函数, 所以,所以, 即

10、 所以,令,解得或, 所以函数的定义域为或; (2), 当时,所以,所以. 因为,恒成立, 所以,所以的取值范围是. 【点睛】本题主要考查由函数奇偶性求参数,考查求具体函数的定义域,考查含对数不等式,属于常考题型. 15、①②③ 【解析】利用诱导公式化简函数,借助周期函数的定义判断①;利用函数图象对称的意义判断②③;取特值判断④作答. 【详解】依题意,,因,是周期函数,是它的一个周期,①正确; 因,, 即,因此的图象关于点成对称中心,②正确; 因,, 即,因此的图象关于直线成轴对称,③正确; 因,,, 显然有,而,因此函数在区间上不单调递增,④不正确, 所以

11、所有正确命题的序号是①②③. 故答案为:①②③ 【点睛】结论点睛:函数的定义域为D,, (1)存在常数a,b使得,则函数图象关于点对称. (2)存在常数a使得,则函数图象关于直线对称. 16、 【解析】根据分段函数的单调性,可知每段函数的单调性,以及分界点处的函数的的大小关系,即可列式求解. 【详解】因为分段函数在上单调递减,所以每段都单调递减,即,并且在分界点处需满足,即,解得:. 故答案为: 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(1)见解析;(2)见解析 【解析】(1)取中点为,连接,,首先说明四边形是平行四边

12、形,即可得,根据线面平行判定定理即可得结果;(2)连接,利用得到,再通过平面得到,进而平面,即可得最后结果. 【详解】(1)证明:取中点为,连接,, 在中,, 又 所以,,即四边形是平行四边形. 故, 又平面,平面, 所以,平面. (2)证明:连接,在正方形中,, 所以,与互余,故, 又,,, 所以,平面,又平面, 故 又, 所以平面 又平面, 所以 【点睛】本题主要考查了线面平行的判定,通过线线垂直线面垂直线面垂直的过程,属于中档题.在证明线面平行中,常见的方法有以下几种:1、利用三角形中位线;2、构造平行四边形得到线线平行;3、构造面面平行等. 1

13、8、(1);(2). 【解析】(1),有解,即在上有解,设,对称轴为,只需,解不等式,即可得出结论; (2)根据题意只需,分类讨论去绝对值求出,利用函数单调性求出或取值范围,转化为求关于的不等式,即可求解. 【详解】(1)在区间上有解, 整理得 在区间上有解, 设,对称轴为, ,解得, 所以a的取值范围.是; (2) 当, ; 当, , , 设是减函数,且在恒成立, 在上是减函数, 在处有意义,, 对任意的,都有, 即, 解得, 的取值范围是. 【点睛】本题考查方程零点的分布求参数范围,考查对数函数的图像和性质的综合应用,要注意对数函数的定义域,函数

14、恒成立问题,属于较难题. 19、(1) (2) 【解析】(1)可使用已知条件,表示出,然后利用诱导公式、和差公式和二倍角公式对要求解的式子进行化简,带入即可求解; (2)可根据和的值,结合和的范围,判定出的范围,然后计算出的值,将要求的借助使用和差公式展开即可求解. 【小问1详解】 角的终边经过点,所以. 所以. 【小问2详解】 由条件可知为第一象限角.又为第一象限角,,所以为第二象限角, 由得, 由, 得 . 20、(1) (2) (3) 【解析】(1)将函数解析式化简整理,然后求出最值,进而得到,即可求出结果; (2)结合正弦型函数图象,解三角不等式

15、即可求出结果; (3)结合伸缩变换求出函数的解析式,进而求出零点,然后结合题意即可求出结果. 【小问1详解】 因为的最大值为1,所以的最大值为, 依题意,,解得 【小问2详解】 由(1)知, 由, 得 所以 解得 所以,使成立的x取值集合为 【小问3详解】 依题意,, 因为是的一个零点,所以, 所以 所以, 因为,所以, 所以t的最大值为 21、(1);(2)当时,;当时, 【解析】(1)分子分母同时除以,然后代入计算即可; (2)利用三角函数的定义求出和,再分和讨论计算即可. 【详解】(1)分子分母同时除以得原式=. (2)由三角函数的定义可知 ,, 当时,,,所以; 当时,,,所以 所以当时,原式;当时,原式

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服