ImageVerifierCode 换一换
格式:DOC , 页数:14 ,大小:1.20MB ,
资源ID:12794024      下载积分:12.58 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/12794024.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(2025年贵州省毕节市梁才学校数学高一第一学期期末统考试题含解析.doc)为本站上传会员【zh****1】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2025年贵州省毕节市梁才学校数学高一第一学期期末统考试题含解析.doc

1、2025年贵州省毕节市梁才学校数学高一第一学期期末统考试题 注意事项: 1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。 2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。 3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。 4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.我们知道,函数的图象关于

2、原点成中心对称图形的充要条件是函数为奇函数,有同学发现可以将其推广为:函数的图象关于点成中心对称图形的充要条件是函数为奇函数.据此,我们可以得到函数图象的对称中心为() A. B. C. D. 2.设,且,则等于() A.100 B. C. D. 3.若函数的图像向左平移个单位得到的图像,则 A. B. C. D. 4.已知,则直线ax+by+c=0与圆的位置关系是 A.相交但不过圆心 B.相交且过圆心 C.相切 D.相离 5.角的终边过点,则() A. B. C. D. 6.命题“,”的否定为 A., B., C., D., 7.函数的定义域为,值域为,则

3、的取值范围是() A. B. C. D. 8.设,,,则有() A. B. C. D. 9.已知命题:,总有,则命题的否定为() A.,使得 B.,使得 C.,总有 D.,总有 10.已知向量,,若与共线,则等于( ) A. B. C. D. 二、填空题:本大题共6小题,每小题5分,共30分。 11.设函数f(x)=-x+2,则满足f(x-1)+f(2x)>0的x的取值范围是______. 12.筒车亦称为“水转筒车”,一种以流水为动力,取水灌田的工具,筒车发明于隋而盛于唐,距今已有1000多年的历史.如图,假设在水流量稳定的情况下,一个半径为3米的筒车按逆时

4、针方向做每6分钟转一圈的匀速圆周运动,筒车的轴心O距离水面BC的高度为1.5米,设筒车上的某个盛水筒P的切始位置为点D(水面与筒车右侧的交点),从此处开始计时,t分钟时,该盛水筒距水面距离为,则___________ 13.若函数,则_________;不等式的解集为__________ 14.=_______________. 15.已知且,函数的图像恒过定点,若在幂函数的图像上,则__________ 16.已知函数若是函数的最小值,则实数a的取值范围为______ 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.已知函数. (1)

5、若的图象恒在直线上方,求实数的取值范围; (2)若不等式在区间上恒成立,求实数的取值范围. 18.已知函数. (1)求函数的最小正周期; (2)求函数的单调减区间; (3)当时,画出函数的图象. 19.已知方程x2+y2-2x-4y+m=0 (1)若此方程表示圆,求m的取值范围; (2)若(1)中的圆与直线x+2y-4=0相交于M、N两点,且OM⊥ON(O为坐标原点),求m; (3)在(2)的条件下,求以MN为直径的圆的方程 20.定义在上的函数,如果满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称为函数的一个上界.已知函数,. (1)若函数为奇函数,求实数的

6、值; (2)在(1)的条件下,求函数在区间上的所有上界构成的集合; (3)若函数在上是以为上界有界函数,求实数的取值范围. 21.已知全集,集合,. (1)当时,求; (2)若,且,求的取值范围. 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、A 【解析】依题意设函数图象的对称中心为,则为奇函数,再根据奇函数的性质得到方程组,解得即可; 【详解】解:依题意设函数图象的对称中心为,由此可得为奇函数,由奇函数的性质可得,解得,则函数图象的对称中心为; 故选:A 2、C 【解析】由,得到,再由求解

7、 【详解】因为, 所以, 则, 所以, 则, 解得, 故选:C 3、A 【解析】函数的图象向左平移个单位,得到的图象对应的函数为: 本题选择A选项. 4、A 【解析】∵2a2+2b2=c2, ∴a2+b2=. ∴圆心(0,0)到直线ax+by+c=0的距离d=<2, ∴直线ax+by+c=0与圆x2+y2=4相交, 又∵点(0,0)不在直线ax+by+c=0上,故选A 点睛:判断直线与圆的位置关系的常见方法 (1)几何法:利用d与r的关系 (2)代数法:联立方程之后利用Δ判断 (3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交

8、 上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题 5、B 【解析】由余弦函数的定义计算 【详解】由题意到原点的距离为, 所以 故选:B 6、A 【解析】特称命题的否定是全称命题,并将结论否定,即可得答案. 【详解】命题“,”的否定为“,”. 故选:A. 【点睛】本题考查特称命题的否定的书写,是基础题. 7、B 【解析】观察在上的图象,从而得到的取值范围. 【详解】解:观察在上的图象, 当时,或, 当时,, ∴的最小值为:, 的最大值为:, ∴的取值范围是 故选:B 【点睛】本题考查余弦函数的定义域和值域,余弦函数的图象,考查数形结合

9、思想,属基础题 8、C 【解析】利用和差公式,二倍角公式等化简,再利用正弦函数的单调性比较大小. 【详解】, ,, 因为函数在上是增函数,, 所以 由三角函数线知:,,因为, 所以,所以 故选:C. 9、B 【解析】根据全称命题的否定性质进行判断即可. 【详解】因为全称命题的否定是特称命题, 所以命题的否定为,使得, 故选:B 10、A 【解析】先求出,,再根据向量共线求解即可. 【详解】由题得, 因为与共线, . 故选:A. 【点睛】本题主要考查平面向量的坐标运算和向量共线的坐标表示,意在考查学生对这些知识的理解掌握水平,属于基础题.

10、 二、填空题:本大题共6小题,每小题5分,共30分。 11、 【解析】由函数的解析式可得,据此解不等式即可得答案 【详解】解:根据题意,函数, 则, 若,即, 解可得:, 即的取值范围为; 故答案为. 【点睛】本题考查函数的单调性的应用,涉及不等式的解法,属于基础题. 12、 【解析】根据图象及所给条件确定振幅、周期、,再根据时求即可得解. 【详解】由题意知,,, , 当时,, ,即, , 所以, 故答案为: 13、 ①. ②. 【解析】代入求值即可求出,分与两种情况解不等式,最后求并集即可. 【详解】,当时,,所以,解得:;当时,,解

11、得:,所以,综上:. 故答案为:, 14、 【解析】解: 15、 【解析】由题意得 16、 【解析】考虑分段函数的两段函数的最小值,要使是函数的最小值,应满足哪些条件,据此列出关于a的不等式,解得答案. 【详解】要使是函数的最小值, 则当 时,函数应为减函数, 那么此时图象的对称轴应位于y轴上或y轴右侧,即 当 时,,当且仅当x=1时取等号, 则,解得, 所以 , 故答案为:. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(1); (2). 【解析】(1)根据给定条件可得恒成立,再借助判别式列出不等式求解即得

12、 (2)根据给定条件列出不等式,再分离参数,借助函数的单调性求出函数值范围即可推理作答. 【小问1详解】 因函数的图象恒在直线上方,即,, 于是得,解得, 所以实数的取值范围是:. 【小问2详解】 依题意,,, 令,, 令函数,,, ,而,即,, 则有,即,于是得在上单调递增, 因此,,,即,从而有,则, 所以实数的取值范围是. 18、(1);(2);(2)详见解析. 【解析】(1)利用二倍角公式和辅助角法得到函数为,再利用周期公式求解; 所以函数的周期为; (2)令,利用正弦函数的性质求解; (3)由列表,利用“五点法”画出函数图象.: 【详解】(1)

13、 , , 所以函数的周期为; (2)令, 解得, 所以函数的单调减区间是; (3)由列表如下: 0 x y 0 -2 0 2 0 则函数的图象如下: . 19、(1)m<5;(2);(3) 【解析】详解】(1)由,得:, ,; (2)由题意, 把代入,得, ,, ∵得出:, ∴, ∴; (3)圆心为, ,半径, 圆的方程. 考点:直线与圆的位置关系. 20、(1);(2);(3). 【解析】(1)由奇函数的定义,代入即可得出结果. (2)由复合函数的单调性,可得在区间上单调递增,进而求出

14、值域,即可得出结果. (3)由题意可得在上恒成立,即在上恒成立,利用函数单调性的定义证明单调性,再求出值域,即可求出结果. 【详解】(1)因函数为奇函数, 所以,即, 即,得,而当时不合题意,故 (2)由(1)得:, 而,易知在区间上单调递增, 所以函数在区间上单调递增, 所以函数在区间上的值域为,所以, 故函数在区间上的所有上界构成集合为. (3)由题意知,在上恒成立. ,. 在上恒成立. 设,,,由得 设, , 所以在上递减,在上递增, 在上的最大值为,在上的最小值为, 所以实数的取值范围为. 21、(1) (2) 【解析】(1)解出不等式,然后可得答案; (2)由条件可得,,解出即可. 【小问1详解】 (1)由题意得:. 当时,, 所以, . 【小问2详解】 因为,所以,即. 又, 所以,解得. 所以的取值范围.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服