ImageVerifierCode 换一换
格式:DOC , 页数:16 ,大小:863KB ,
资源ID:12793962      下载积分:12.58 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/12793962.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(2026届江苏省扬州市新华中学数学高一第一学期期末质量跟踪监视试题含解析.doc)为本站上传会员【zh****1】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2026届江苏省扬州市新华中学数学高一第一学期期末质量跟踪监视试题含解析.doc

1、2026届江苏省扬州市新华中学数学高一第一学期期末质量跟踪监视试题 请考生注意: 1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。 2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.已知是两条不同直线,是三个不同平面,下列命题中正确的是( ) A.若则 B.若则 C.若则 D.若则 2.已知函数,若不等式对任意实数x恒成立,则a的取值范围为()

2、 A B. C. D. 3.甲、乙两人在一次赛跑中,从同一地点出发,路程s与时间t的函数关系如图所示,则下列说法正确的是() A.甲比乙先出发 B.乙比甲跑的路程多 C.甲比乙先到达终点 D.甲、乙两人的速度相同 4.已知函数的图象与函数的图象关于直线对称,函数是满足的偶函数,且当时,,若函数有3个零点,则实数的取值范围是( ) A. B. C. D. 5.在中,,,若点满足,则() A. B. C. D. 6.已知集合A={x|x<2},B={x≥1},则A∪B=(  ) A. B. C. D.R 7.函数的图像为( ) A. B. C. D.

3、 8.在底面为正方形的四棱锥中,侧面底面,,,则异面直线与所成的角为( ) A. B. C. D. 9.已知函数的图象上的每一点的纵坐标扩大到原来的倍,横坐标扩大到原来的倍,然后把所得的图象沿轴向右平移个单位,这样得到的曲线和的图象相同,则已知函数的解析式为 A B. C. D. 10.焦点在y轴上,焦距等于4,离心率等于的椭圆的标准方程是   A. B. C. D. 二、填空题:本大题共6小题,每小题5分,共30分。 11.已知半径为的扇形的面积为,周长为,则________ 12.设一扇形的弧长为4cm,面积为4cm2,则这个扇形的圆心角的弧度数是___

4、 13.已知(其中且为常数)有两个零点,则实数的取值范围是___________. 14.已知α为第二象限角,且则的值为______. 15.的边的长分别为,且,,,则__________. 16.某挂钟秒针的端点A到中心点的距离为,秒针均匀地绕点旋转,当时间时,点A与钟面上标12的点重合,A与两点距离地面的高度差与存在函数关系式,则解析式___________,其中,一圈内A与两点距离地面的高度差不低于的时长为___________. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.在平面直角坐标系中,角的顶点与坐标原点重合,始边

5、与轴的非负半轴重合,终边与单位圆相交于点A,已知点A的纵坐标为. (1)求的值; (2)求的值. 18.设函数(且,) (1)若是定义在R上的偶函数,求实数k的值; (2)若,对任意的,不等式恒成立,求实数a的取值范围 19. (1)试证明差角的余弦公式:; (2)利用公式推导: ①和角的余弦公式,正弦公式,正切公式; ②倍角公式,,. 20.已知向量, (1)若与垂直,求实数的值; (2)求向量在方向上的投影 21.已知函数的图象经过点 (1)求的解析式; (2)若不等式对恒成立,求m的取值范围 参考答案 一、选择题:本大题共10小题,每小题5分,共5

6、0分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、D 【解析】A项,可能相交或异面,当时,存在,,故A项错误; B项,可能相交或垂直,当 时,存在,,故B项错误; C项,可能相交或垂直,当 时,存在,,故C项错误; D项,垂直于同一平面的两条直线相互平行,故D项正确,故选D. 本题主要考查的是对线,面关系的理解以及对空间的想象能力. 考点:直线与平面、平面与平面平行的判定与性质;直线与平面、平面与平面垂直的判定与性质. 2、C 【解析】先分析出的奇偶性,再得出的单调性,由单调性结合奇偶性解不等式得到,再利用均值不等式可得答案. 【详解】的定义域满足,由, 所

7、以在上恒成立.所以的定义域为 则 所以,即为奇函数. 设,由上可知为奇函数. 当时,,均为增函数,则在上为增函数. 所以在上为增函数. 又为奇函数,则在上为增函数,且 所以在上为增函数. 所以在上为增函数. 由,即 所以对任意实数x恒成立 即,由 当且仅当,即时得到等号. 所以 故选:C 3、C 【解析】结合图像逐项求解即可. 【详解】结合已知条件可知,甲乙同时出发且跑的路程都为,故AB错误; 且当甲乙两人跑的路程为时,甲所用时间比乙少,故甲先到达终点且甲的速度较大, 故C正确,D错误. 故选:C. 4、B 【解析】把函数有3个零点,转化为有

8、3个不同根,画出函数与的图象,转化为关于的不等式组求解即可. 【详解】由函数的图象与函数的图象关于直线对称,得,函数是最小正周期为2的偶函数,当时,,函数有3个零点,即有3个不同根, 画出函数与的图象如图: 要使函数与的图象有3个交点,则,且,即.∴ 实数的取值范围是. 故选:B. 5、C 【解析】由题可得,进一步化简可得. 【详解】,, . 故选:C. 6、D 【解析】利用并集定义直接求解即可 【详解】∵集合A={x|x<2},B={x≥1}, ∴A∪B=R. 故选D 【点睛】本题考查并集的求法,考查并集定义、不等式性质等基础知识,考查运算求解能力,是基础题

9、 7、B 【解析】首先判断函数的奇偶性,再根据函数值的特征,利用排除法判断可得; 【详解】解:因为,定义域为,且,故函数为偶函数,函数图象关于轴对称,故排除A、D,当时,,所以,故排除C, 故选:B 8、C 【解析】由已知可得PA⊥平面ABCD,底面ABCD为正方形,分别过P,D点作AD,AP的平行线 交于M,连接CM,AM,因为PB∥CM,所以ACM就是异面直线PB与AC所成的角,再求解即可. 【详解】 由题意:底面ABCD为正方形, 侧面底面,, 面面, PA⊥平面ABCD, 分别过P,D点作AD,AP的平行线交于M, 连接CM,AM, ∵PM∥AD,AD∥B

10、C, PM=AD,AD=BC ∴ PBCM是平行四边形, ∴ PB∥CM, 所以∠ACM就是异面直线PB与AC所成的角 设PA=AB=a, 在三角形ACM中,, ∴三角形ACM是等边三角形 所以∠ACM等于60°, 即异面直线PB与AC所成的角为60° 故选:C. 【点睛】思路点睛:先利用面面垂直得到PA⊥平面ABCD,分别过P,D点作AD,AP的平行线交于M,连接CM,AM,得到∠ACM就是异面直线PB与AC所成的角 9、B 【解析】分析:将.的图象轴向左平移个单位,然后把所得的图象上的每一点的纵坐标变为原来的四分之一倍,横坐标变为原来的二分之一倍,即可得到函数的图

11、象,从而可得结果. 详解:利用逆过程:将.的图象轴向左平移个单位,得到的图象; 将的图象上的每一点的纵坐标变为原来的四分之一倍得到的图象; 将的图象上的每一点的横坐标变为原来的四分之一倍得到的图象, 所以函数的解析式为,故选B. 点睛:本题主要考查了三角函数图象变换,重点考查学生对三角函数图象变换规律的理解与掌握,能否正确处理先周期变换后相位变换这种情况下图象的平移问题,反映学生对所学知识理解的深度. 10、C 【解析】设椭圆方程为: ,由题意可得: ,解得: , 则椭圆的标准方程为:. 本题选择D选项 二、填空题:本大题共6小题,每小题5分,共30分。 11、

12、 【解析】根据扇形面积与周长公式代入列式,联立可求解半径. 【详解】根据扇形面积公式得,周长公式得,联立可得. 故答案为: 12、2 【解析】设扇形的半径为r,圆心角的弧度数为,由弧度制下扇形的弧长与面积计算公式可得,,解得半径r=2,圆心角的弧度数,所以答案为2 考点:弧度制下扇形的弧长与面积计算公式 13、 【解析】设,可转化为有两个正解,进而可得参数范围. 【详解】设, 由有两个零点, 即方程有两个正解, 所以,解得, 即, 故答案为:. 14、 【解析】根据已知求解得出,再利用诱导公式和商数关系化简可求 【详解】由,得,得或. α为第二象限角,, .

13、 故答案:. 15、 【解析】由正弦定理、余弦定理得 答案: 16、 ①. ②. 【解析】先求出经过,秒针转过的圆心角的为,进而表达出函数解析式,利用求出的解析式建立不等式,解出解集,得到答案. 【详解】经过,秒针转过的圆心角为, 得. 由,得, 又,故, 得,解得:, 故一圈内A与两点距离地面的高度差不低于的时长为. 故答案为:, 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(1) (2) 【解析】(1)根据点A的纵坐标,可求得点A的横坐标,根据正切函数的定义,即可得答案. (2)利用诱导公式进行

14、化简,结合(1)即可得答案. 【小问1详解】 因为点A纵坐标为,且点A在第二象限, 所以点A的横坐标为, 所以; 【小问2详解】 由诱导公式可得:. 18、(1)1(2) 【解析】(1)由函数奇偶性列出等量关系,求出实数k的值;(2)对原式进行化简,得到对恒成立,分和两种情况分类讨论,求出实数a的取值范围. 【小问1详解】 由可得, 即对恒成立,可解得: 【小问2详解】 当时,有 由, 即有,且 故有对恒成立, ①若,则显然成立 ②若,则函数在上单调递增 故有,解得:; 综上:实数a的取值范围为 19、(1)证明见解析;(2)①答案见解析;②答案见解析

15、 【解析】在单位圆里面证明,然后根据诱导公式即可证明和,利用正弦余弦和正切的关系即可证明;用正弦余弦正切的和角公式即可证明对应的二倍角公式. 【详解】(1)不妨令. 如图, 设单位圆与轴的正半轴相交于点,以轴非负半轴为始边作角,它们的终边分别与单位圆相交于点,,. 连接.若把扇形绕着点旋转角,则点分別与点重合.根据圆的旋转对称性可知,与重合,从而,=,∴. 根据两点间的距离公式,得: , 化简得: 当时,上式仍然成立. ∴,对于任意角有:. (2)①公式的推导: . 公式的推导: 正切公式的推导: ②公式的推导: 由①知,

16、 公式的推导: 由①知,. 公式的推导: 由①知,. 20、(1);(2). 【解析】(1)利用坐标运算表示出,由向量垂直的坐标表示可构造方程求得结果;(2)根据可直接求得结果. 【详解】(1) 与垂直 ,解得: (2)向量在方向上的投影为: 【点睛】本题考查向量垂直关系的坐标表示、向量在方向上的投影的求解;关键是能够由向量垂直得到数量积为零、能熟练掌握投影公式,从而利用向量坐标运算求得结果. 21、 (1) ,(2) 【解析】(1)直接代入两点计算得到答案. (2)变换得到,判断在上单调递减,计算,解不等式得到答案. 【详解】(1)由题意得解得,.故, (2)不等式,即不等式, 则不等式在上恒成立, 即不等式上恒成立, 即在上恒成立 因为在上单调递减,在上单调递减, 所以在上单调递减, 故.因为在上恒成立, 所以,即, 解得 故m的取值范围为 【点睛】本题考查了函数的解析式,恒成立问题,将恒成立问题转化为函数的最值是解题的关键.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服