ImageVerifierCode 换一换
格式:DOC , 页数:13 ,大小:577.50KB ,
资源ID:12793029      下载积分:12.58 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/12793029.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(甘肃省天水第一中学2025-2026学年高一上数学期末学业质量监测模拟试题含解析.doc)为本站上传会员【y****6】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

甘肃省天水第一中学2025-2026学年高一上数学期末学业质量监测模拟试题含解析.doc

1、甘肃省天水第一中学2025-2026学年高一上数学期末学业质量监测模拟试题 注意事项: 1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。 2.答题时请按要求用笔。 3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。 4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。 5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.已知三棱锥D-ABC中,

2、AB=BC=1,AD=2,BD=,AC=,BC⊥AD,则该三棱锥的外接球的表面积为() A.π B.6π C.5π D.8π 2.函数的大致图像如图所示,则它的解析式是 A. B. C. D. 3.已知函数若则的值为(). A. B.或4 C. D.或4 4.已知函数,若实数满足,则实数的取值范围是() A. B. C. D. 5.在四面体的四个面中,是直角三角形的至多有 A.0个 B.2个 C.3个 D.4个 6.化简的结果是() A. B.1 C. D.2 7.基本再生数与世代间隔是流行病学基本参数,基本再生数是指一个感染者传染的平均人数,世代间

3、隔指两代间传染所需的平均时间,在型病毒疫情初始阶段,可以用指数函数模型描述累计感染病例数随时间(单位:天)的变化规律,指数增长率与、近似满足,有学者基于已有数据估计出,.据此,在型病毒疫情初始阶段,累计感染病例数增加至的4倍,至少需要()(参考数据:) A.6天 B.7天 C.8天 D.9天 8.一个多面体的三视图分别为正方形、等腰三角形和矩形,如图所示,则该多面体的体积为 A.24cm3 B.48cm3 C.32cm3 D.96cm3 9.设p:关于x的方程有解;q:函数在区间上恒为正值,则p是q的() A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也

4、不必要条件 10. “”是“”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 二、填空题:本大题共6小题,每小题5分,共30分。 11.若,则的值为______ 12.若弧度数为2的圆心角所对的弦长为2,则这个圆心角所夹扇形的面积是___________ 13.幂函数,当取不同的正数时,在区间上它们的图像是一族美丽的曲线(如图).设点,连接,线段恰好被其中的两个幂函数的图像三等分,即有.那么_______ 14.已知实数x、y满足,则的最小值为____________. 15.已知函数,正实数,满足,且,若在区间上的最大值为

5、2,则________. 16.命题“”的否定是___________. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.如图,在三棱柱中,侧棱平面,、分别是、的中点,点在侧棱上,且,,求证: (1)直线平面; (2)平面平面. 18.已知直线 (1)求与垂直,且与两坐标轴围成的三角形面积为 4 直线方程: (2)已知圆心为,且与直线相切求圆的方程; 19.已知. (1)化简; (2)若,求. 20.已知角的终边经过点,试求: (1)tan的值; (2)的值. 21.(1)若,求的值; (2)已知锐角,满足,若,求的值

6、 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、B 【解析】由题意结合平面几何、线面垂直的判定与性质可得BC⊥BD,AD⊥AC,再由平面几何的知识即可得该几何体外接球的球心及半径,即可得解. 【详解】 AB=BC=1,AD=2,BD=,AC=, ∴,, ∴DA⊥AB,AB⊥BC,由BC⊥AD 可得BC⊥平面DAB,DA⊥平面ABC, ∴BC⊥BD,AD⊥AC, ∴CD=, 由直角三角形的性质可知,线段CD的中点O到点A,B,C,D的距离均为, ∴该三棱锥外接球的半径为, 故三棱锥的外接球的表

7、面积为4π=6π. 故选:B. 【点睛】本题考查了三棱锥几何特征的应用及其外接球表面积的求解,考查了运算求解能力与空间思维能力,属于中档题. 2、D 【解析】由图易知:函数图象关于y轴对称,函数为偶函数,排除A,B; 的图象为开口向上的抛物线,显然不适合, 故选D 点睛:识图常用方法 (1)定性分析法:通过对问题进行定性的分析,从而得出图象的上升(或下降)的趋势,利用这一特征分析解决问题; (2)定量计算法:通过定量的计算来分析解决问题; (3)函数模型法:由所提供的图象特征,联想相关函数模型,利用这一函数模型来分析解决问题 3、B 【解析】利用分段讨论进行求解.

8、 【详解】当时,,(舍); 当时,,或(舍); 当时,,; 综上可得或. 故选:B. 【点睛】本题主要考查分段函数的求值问题,侧重考查分类讨论的意识. 4、D 【解析】由题可得函数关于对称,且在上单调递增,在上单调递减,进而可得,即得. 【详解】∵函数,定义域为, 又, 所以函数关于对称, 当时,单调递增,故函数单调递增, ∴函数在上单调递增,在上单调递减, 由可得,, 解得,且. 故选:D. 5、D 【解析】作出图形,能够做到PA与AB,AC垂直,BC与BA,BP垂直,得解 【详解】如图,PA⊥平面ABC, CB⊥AB, 则CB⊥BP, 故四个面均为

9、直角三角形 故选D 【点睛】本题考查了四面体的结构与特征,考查了线面的垂直关系,属于基础题. 6、B 【解析】利用三角函数的诱导公式化简求解即可. 【详解】原式 . 故选:B 7、B 【解析】根据题意将给出的数据代入公式即可计算出结果 【详解】因为,,,所以可以得到 ,由题意可知, 所以至少需要7天,累计感染病例数增加至的4倍 故选:B 8、B 【解析】由三视图可知该几何体是一个横放的直三棱柱,利用所给的数据和直三棱柱的体积公式即可求得体积. 【详解】由三视图可知该几何体是一个横放的直三棱柱,底面为等腰三角形,底边长为,底面三角形高为,所以其体积为:.

10、 故选:B 【点睛】本题考查三视图及几何体体积计算,认识几何体的几何特征是解题的关键,属于基础题. 9、B 【解析】先化简p,q,再利用充分条件和必要条件的定义判断. 【详解】因为方程有解,即方程有解, 令,则,即; 因为函数在区间上恒为正值, 所以在区间上恒成立,即在区间上恒成立, 解得, 所以p是q的必要不充分条件, 故选:B 10、A 【解析】根据终边相同的角的三角函数值相等,结合充分不必要条件的定义,即可得到答案; 【详解】, 当, “”是“”的充分不必要条件, 故选:A 二、填空题:本大题共6小题,每小题5分,共30分。 11、0 【解析】由

11、得到 ∴sin ∴2sin+4 两边都除以,得:2tan 故答案为0 12、 【解析】根据所给弦长,圆心角求出所在圆的半径,利用扇形面积公式求解. 【详解】由弦长为2,圆心角为2可知扇形所在圆的半径, 故, 故答案为: 13、1 【解析】求出的坐标,不妨设,,分别过,,分别代入点的坐标,变形可解得结果. 【详解】因为,,, 所以,, 不妨设,,分别过,, 则,, 则,所以 故答案为:1 14、 【解析】利用基本不等式可得,即求. 【详解】依题意, 当且仅当,即时等号成立. 所以的最小值为. 故答案为:. 15、 【解析】先画出函数图像并判断,

12、再根据范围和函数单调性判断时取最大值,最后计算得到答案. 【详解】如图所示:根据函数的图象 得,所以.结合函数图象, 易知当时在上取得最大值,所以 又,所以, 再结合,可得,所以. 故答案为: 【点睛】本题考查对数型函数的图像和性质、函数的单调性的应用和最值的求法,是中档题. 16、,. 【解析】根据特称命题的否定的性质进行求解即可. 【详解】特称命题的否定,先把存在量词改为全称量词,再把结论进行否定即可,命题“,”的否定是“,”, 故答案为:,. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(1)证明见解析;(2)

13、证明见解析. 【解析】(1)由中位线的性质得出,由棱柱的性质可得出,由平行线的传递性可得出,进而可证明出平面; (2)证明出平面,可得出,结合可证明出平面,再由面面垂直的判定定理即可证明出结论成立. 【详解】(1)、分别为、的中点,为的中位线,, 为棱柱,,, 平面,平面,平面; (2)在三棱柱中,平面, 平面,, 又且,、平面, 平面,而平面,故. 又,且,、平面, 平面,又平面,平面平面. 【点睛】本题考查线面平行和面面垂直的证明,考查推理能力,属于中等题. 18、(1)或;(2) 【解析】分析:(1)由题意,设所求的直线方程为,分离令和,求得在坐标轴上的截距,

14、利用三角形的面积公式,求得的值,即可求解; (2)设圆的半径为,因为圆与直线相切,列出方程,求得半径,即可得到圆的标准方程. 详解:(1)∵所求的直线与直线垂直, ∴设所求的直线方程为 , ∵令,得;令,得. ∵所求的直线与两坐标轴围成的三角形面积为 4 ∴,∴ ∴所求的直线方程为或 (2)设圆的半径为,∵圆与直线相切 ∴∴所求的圆的方程为 点睛:本题主要考查了直线方程的求解,以及直线与圆的位置关系的应用,着重考查了推理与计算能力,属于基础题. 19、 (Ⅰ);(Ⅱ) . 【解析】【试题分析】(1)利用诱导公式和同角三角函数关系,可将原函数化简为;(2)首先除以,即除以

15、然后分子分母同时除以,将所求式子转化为仅含有的表达式来求解. 【试题解析】 (Ⅰ) (Ⅱ) = = 20、(1); (2). 【解析】(1)根据特殊角的三角函数值,结合正切函数的定义进行求解即可; (2)利用同角的三角函数关系式进行求解即可. 【小问1详解】 ∵, , ∴点P的坐标为(1,3),由三角函数的定义可得: ; 【小问2详解】 . 21、(1)5;(2). 【解析】(1)根据给定条件化正余的齐次式为正切,再代入计算作答. (2)根据给定条件利用差角的余弦公式求出,结合角的范围求出即可作答. 【详解】(1)因,所以. (2)因,是锐角,则,,又,, 因此,,, 则, 显然,于是得:,解得, 所以的值为.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服