ImageVerifierCode 换一换
格式:DOC , 页数:15 ,大小:944KB ,
资源ID:12791524      下载积分:12.58 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/12791524.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(北京市西城区普通中学2025-2026学年数学高一上期末复习检测试题含解析.doc)为本站上传会员【zj****8】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

北京市西城区普通中学2025-2026学年数学高一上期末复习检测试题含解析.doc

1、北京市西城区普通中学2025-2026学年数学高一上期末复习检测试题 考生须知: 1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。 2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。 3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.设函数的部分图象如图,则   A. B. C. D. 2.如图所示,点P在正方形ABC

2、D所在平面外,PA⊥平面ABCD,PA=AB,则PB与AC所成的角(  ) A.90° B.60° C.45° D.30° 3.函数的零点所在的区间是() A.(-2,-1) B.(-1,0) C.(0,1) D.(1,2) 4.已知是两条不同直线,是三个不同平面,下列命题中正确的是( ) A.若则 B.若则 C.若则 D.若则 5.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片的数字之积为偶数的概率为( ) A. B. C. D. 6.直线l:与圆C:的位置关系是   A.相切 B.相离 C.相交 D.不确定 7.已

3、知圆和圆,则两圆的位置关系为 A.内含 B.内切 C.相交 D.外切 8.函数的最大值为() A. B. C.2 D.3 9. “”是“关于的不等式对恒成立”的() A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 10. “”是“函数在内单调递增”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要 二、填空题:本大题共6小题,每小题5分,共30分。 11.已知,则__________ 12.函数的最小正周期为,且.当时,则函数的对称中心__________;若,则值为__________

4、 13.在四边形ABCD中,若,且,则的面积为_______. 14.请写出一个最小正周期为,且在上单调递增的函数__________ 15.若函数在上单调递增,则a的取值范围为______ 16.若函数在区间上为减函数,则实数的取值范围为________ 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.已知函数在区间上单调,当时, 取得最大值5,当时, 取得最小值-1. (1)求的解析式 (2)当时, 函数有8个零点, 求实数的取值范围 18.设集合,,不等式的解集为 (1)当a为0时,求集合、; (2)若,求实数的取值范围

5、19.函数的定义域为D,若存在正实数k,对任意的,总有,则称函数具有性质. (1)判断下列函数是否具有性质,并说明理由. ①;②; (2)已知为二次函数,若存在正实数k,使得函数具有性质.求证:是偶函数; (3)已知为给定的正实数,若函数具有性质,求的取值范围. 20.已知函数,,.若不等式的解集为 (1)求的值及; (2)判断函数在区间上的单调性,并利用定义证明你的结论 (3)已知且,若.试证:. 21.(1)计算:; (2)已知,,求证: 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、A

6、 【解析】根据函数的图象,求出A,和的值,得到函数的解析式,即可得到结论 【详解】由图象知,,则,所以, 即, 由五点对应法,得,即, 即, 故选A 【点睛】本题主要考查了由三角函数的图象求解函数的解析式,其中解答中根据条件求出A,和的值是解决本题的关键,着重考查了运算与求解能力,属于基础题. 2、B 【解析】将原图还原到正方体中,连接SC,AS,可确定(或其补角)是PB与AC所成的角. 【详解】因为ABCD为正方形,PA⊥平面ABCD,PA=AB,可将原图还原到正方体中,连接SC,AS,则PB平行于SC,如图所示. ∴(或其补角)是PB与AC所成的角,∵为正三角形,

7、 ∴,∴PB与AC所成角为. 故选:B. 3、C 【解析】利用零点存在性定理判断即可. 【详解】易知函数的图像连续 ,, 由零点存在性定理,排除A; 又,,排除B; ,,结合零点存在性定理,C正确 故选:C. 【点睛】判断零点所在区间,只需利用零点存在性定理,求出区间端点的函数值,两者异号即可,注意要看定义域判断图像是否连续. 4、D 【解析】A项,可能相交或异面,当时,存在,,故A项错误; B项,可能相交或垂直,当 时,存在,,故B项错误; C项,可能相交或垂直,当 时,存在,,故C项错误; D项,垂直于同一平面的两条直线相互平行,故D项正确,故选D. 本题

8、主要考查的是对线,面关系的理解以及对空间的想象能力. 考点:直线与平面、平面与平面平行的判定与性质;直线与平面、平面与平面垂直的判定与性质. 5、D 【解析】从4张卡片上分别写有数字1,2,3,4中随机抽取2张的基本事件有: 12,13,14,23,24,34,一共6种, 其中数字之积为偶数的有:12,14,23,24,34一共有5种, 所以取出的2张卡片的数字之积为偶数的概率为, 故选:D 6、C 【解析】利用点到直线的距离公式求出直线和圆的距离,即可作出判断. 【详解】圆C:的圆心坐标为:, 则圆心到直线的距离, 所以圆心在直线l上, 故直线与圆相交 故选C

9、点睛】本题考查的知识要点:直线与圆的位置关系的应用,点到直线的距离公式的应用 7、B 【解析】由于圆,即  表示以 为圆心,半径等于1的圆 圆,即,表示以为圆心,半径等于3的圆 由于两圆的圆心距等于 等于半径之差,故两个圆内切 故选B 8、B 【解析】先利用,得;再用换元法结合二次函数求函数最值. 【详解】, ,当时取最大值, . 故选:B 【点睛】易错点点睛:注意的限制条件. 9、B 【解析】先根据“关于的不等式对恒成立”得,再根据集合关系判断即可得答案. 【详解】设:“关于的不等式对恒成立”, 则由知一元二次函数的图象开口向上,且轴无交点. 所以对于

10、一元二次方程必有, 解得, 由于, 所以“”是“关于的不等式对恒成立”的必要不充分条件. 故选:B. 【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断: (1)若是的必要不充分条件,则对应集合是对应集合的真子集; (2)若是充分不必要条件, 则对应集合是对应集合的真子集; (3)若是的充分必要条件,则对应集合与对应集合相等; (4)若是的既不充分又不必要条件, 对的集合与对应集合互不包含 10、A 【解析】由函数在内单调递增得,进而根据充分,必要条件判断即可. 【详解】解:因为函数在内单调递增, 所以, 因为是的真子集, 所以“”是“函数在内

11、单调递增”的充分而不必要条件 故选:A 二、填空题:本大题共6小题,每小题5分,共30分。 11、 【解析】由题意利用同角三角函数的基本关系,求得要求式子的值 【详解】∵tanα=3,∴sinα•cosα . 故答案为. 【点睛】本题主要考查同角三角函数的基本关系,属于基础题 12、 ①. ②. 【解析】根据最小正周期以及关于的方程求解出的值,根据对称中心的公式求解出在上的对称中心;先求解出的值,然后根据角的配凑结合两角差的正弦公式求解出的值. 【详解】因为最小正周期为,所以, 又因为,所以, 所以或, 又因为,所以,所以, 所以, 令,所以,

12、又因为,所以,所以对称中心为; 因为,,所以, 若,则,不符合, 所以,所以, 所以, 故答案为:;. 13、 【解析】由向量的加减运算可得四边形为平行四边形,再由条件可得四边形为边长为4的菱形,由三角形的面积公式计算可得所求值 【详解】 在四边形中,,即为,即, 可得四边形为平行四边形,又, 可得四边形为边长为4的菱形, 则的面积为正的面积,即为, 故答案为: 14、或(不唯一). 【解析】根据函数最小正周期为,可构造正弦型、余弦型或者正切型函数,再结合在上单调递增,构造即可. 【详解】解:根据函数最小正周期为,可构造正弦型、余弦型或者正切型函数,再结合在上单

13、调递增,构造即可, 如或满足题意 故答案为:或(不唯一). 15、 【解析】根据函数的单调性得到,计算得到答案. 【详解】函数在上单调递增,则 故答案为: 【点睛】本题考查了函数的单调性,意在考查学生的计算能力. 16、 【解析】分类讨论,时根据二次函数的性质求解 【详解】时,满足题意; 时,,解得, 综上, 故答案为: 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(1);(2). 【解析】(1)由函数的最大值和最小值求出,由周期求出ω,由特殊点的坐标出φ的值,可得函数的解析式 (2)等价于时,方程有个不同的解

14、即与有个不同交点,画图数形结合即可解得 【详解】(1)由题知, ..又,即,的解析式为. (2)当时,函数有个零点, 等价于时,方程有个不同的解. 即与有个不同交点. 由图知必有, 即.实数的取值范围是. 【点睛】已知函数有零点求参数常用的方法和思路: (1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成函数的值域问题解决; (3)数形结合法:先对解析式变形,在同一个平面直角坐标系中,画出函数的图像,然后数形结合求解. 18、(1),;(2)或 【解析】(1)根据题意,由可得结合,解不等式可得集合

15、 (2)根据题意,分是否为空集2种情况讨论,求出的取值范围,综合即可得答案 【详解】解:(1)根据题意,集合,, 当时,, ,则, (2)根据题意,若, 分2种情况讨论: ①,当时,即时,,成立; ②,当时,即时,, 若,必有, 解可得, 综合可得的取值范围为或 【点睛】本题考查集合的包含关系的应用,(2)中注意讨论为空集,属于基础题 19、(1)具有性质;不具有性质;(2)见解析;(3) 【解析】(1)根据定义即可求得具有性质;根据特殊值即可判断不具有性质; (2)利用反证法,假设二次函数不是偶函数,根据题意推出与题设矛盾即可证明; (3)根据题意得到,再根

16、据具有性质,得到,解不等式即可. 【详解】解:(1),定义域为, 则有, 显然存在正实数,对任意的,总有, 故具有性质; ,定义域为, 则, 当时,, 故不具有性质; (2)假设二次函数不是偶函数, 设,其定义域为, 即, 则, 易知,是无界函数, 故不存在正实数k,使得函数具有性质,与题设矛盾, 故是偶函数; (3)的定义域为, , 具有性质, 即存在正实数k,对任意的,总有, 即, 即, 即, 即, 即, 即, 通过对比解得:, 即. 【点睛】方法点睛:应用反证法时必须先否定结论,把结论的反面作为条件,且

17、必须根据这一条件进行推理,否则,仅否定结论,不从结论的反面出发进行推理,就不是反证法.所谓矛盾主要指:①与已知条件矛盾;②与假设矛盾;③与定义、公理、定理矛盾;④与公认的简单事实矛盾;⑤自相矛盾. 20、(1); (2)函数在区间上的单调递增,证明见解析 (3)见解析 【解析】(1)根据二次不等式的解集可以得到二次函数的零点,回代即可求出参数的值 (2)定义法证明单调性,假设,若,则单调递增,若,则单调递减 (3)单调性的逆应用,可以通过证明函数值的大小,反推变量的大小,难度较大 【小问1详解】 ,即,因不等式解集为,所以,解得: ,所以 【小问2详解】 函

18、数在区间上的单调递增,证明如下: 假设,则 , 因为,所以,所以,即当时,,所以函数在区间上的单调递增 【小问3详解】 由(2)可得:函数在区间上的单调递增, 在区间上的单调递减,因为,且,,所以,, 证明,即证明,即证明,因为,所以即证明,代入解析式得:,即 ,令,因为在区间上的单调递增,根据复合函数同增异减的性质可知,在区间上的单调递减,所以单调递增,即,所以在区间上恒成立,即,得证: 【点睛】小问1求解析式,较易;小问2考察定义法证明单调性,按照常规方法求解即可;小问3难度较大,解题过程中应用到以下知识点: (1)可以通过证明函数值的大小,结合函数的单调性,反推出变量的大小,即若,且单减,则;解题过程 (2)单调性的性质,复合函数同增异减以及增函数减去减函数为增函数 21、(1)13;(2)证明见解析. 【解析】(1)根据指数和对数的运算法则直接计算可得; (2)根据对数函数的单调性分别求出范围和范围可判断. 【详解】(1)原式 (2)因为在上递减,在上递增, 所以,, 故 因为, 且在递增, 所以,即 所以,即 【点睛】本题考查对数函数单调性的应用,解题的关键是利用对数函数的单调性求出范围,进而可比较大小.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服