ImageVerifierCode 换一换
格式:DOC , 页数:14 ,大小:651.50KB ,
资源ID:12791386      下载积分:12.58 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/12791386.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(安徽省凤阳县二中2025年高一数学第一学期期末联考试题含解析.doc)为本站上传会员【cg****1】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

安徽省凤阳县二中2025年高一数学第一学期期末联考试题含解析.doc

1、安徽省凤阳县二中2025年高一数学第一学期期末联考试题 注意事项: 1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。 2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。 3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。 4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.函数(,)在一个周期内的图象

2、如图所示,为了得到正弦曲线,只需把图象上所有的点() A.向左平移个单位长度,再把所得图象上所有点的横坐标缩短到原来的,纵坐标不变 B.向右平移个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍,纵坐标不变 C.向左平移个单位长度,再把所得图象上所有点的横坐标缩短到原来的,纵坐标不变 D.向右平移个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍,纵坐标不变 2.若点在角的终边上,则( ) A. B. C. D. 3.幂函数在区间上单调递增,且,则的值() A.恒大于0 B.恒小于0 C.等于0 D.无法判断 4.函数的最小值为() A. B. C

3、0 D. 5.若点、、在同一直线上,则() A. B. C. D. 6.函数,设,则有 A. B. C. D. 7.已知函数,的图象如图,若,,且,则(  ) A.0 B.1 C. D. 8.已知函数f(x)=Acos(ωx+φ)的图像如图所示,,则f(0)=( ) A. B. C. D. 9.表面积为24的正方体的顶点都在同一个球面上,则该球的表面积是 A. B. C. D. 10.已知函数,则下列区间中含有的零点的是( ) A. B. C. D. 二、填空题:本大题共6小题,每小题5分,共30分。 11.已知幂函数的图象过点,且

4、则a的取值范围是______ 12.在△ABC中,点满足,过点的直线与,所在直线分别交于点,,若,,,则的最小值为___________. 13.不等式对任意实数都成立,则实数的取值范围是__________ 14.已知圆心为,且被直线截得的弦长为,则圆的方程为__________ 15.已知圆:,为圆上一点,、、,则的最大值为______. 16.若正数x,y满足,则的最小值是_________ 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.已知函数是偶函数 (1)求的值; (2)将函数的图像向右平移个单位,再将得到的图像上各点的

5、横坐标伸长为原来的4倍(纵坐标不变),得到函数的图像,讨论在上的单调性 18.已知函数在上最大值为3,最小值为 (1)求的解析式; (2)若,使得,求实数m的取值范围 19.已知角,且. (1)求的值; (2)求的值. 20.已知函数,,g (x)与f (x)互为反函数. (1)若函数在区间内有最小值,求实数m的取值范围; (2)若函数y = h(g(x))在区间(1,2)内有唯一零点,求实数m的取值范围. 21.计算: (1); (2)已知,求. 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的

6、 1、B 【解析】先利用图像求出函数的解析式,在对四个选项,利用图像变换一一验证即可. 【详解】由图像可知:,所以,所以,解得:. 所以. 又图像经过,所以,解得:, 所以 对于A:把图象上所有的点向左平移个单位长度,得到,再把所得图象上所有点的横坐标缩短到原来的,纵坐标不变得到.故A错误; 对于B:把图象上所有点向右平移个单位长度,得到,再把所得图象上所有点的横坐标伸长到原来的2倍,纵坐标不变.故B正确; 对于C:把图象上所有点向左平移个单位长度,得到,再把所得图象上所有点的横坐标缩短到原来的,纵坐标不变.故C错误; 对于D:把图象上所有的点向右平移个单位长度,得到,再把

7、所得图象上所有点的横坐标伸长到原来的2倍,纵坐标不变得到.故D错误; 故选:B 2、A 【解析】利用三角函数的定义可求得结果. 【详解】由三角函数定义可得. 故选:A. 3、A 【解析】由已知条件求出的值,则可得幂函数的解析式,再利用幂函数的性质判断即可 【详解】由函数是幂函数,可得,解得或 当时,;当时, 因为函数在上是单调递增函数,故 又,所以, 所以,则 故选:A 4、C 【解析】利用对数函数单调性得出函数在时取得最小值 【详解】, 因为是增函数,因此当时,,, 当时,,, 而时,, 所以时, 故选:C 5、A 【解析】利用结合斜率公式可求得

8、实数的值. 【详解】因为、、在同一直线上,则,即,解得. 故选:A. 6、D 【解析】>1,<0,0<<1,∴b0,∴f(c)

9、 则,, 所以, 因在函数图象上, 所以, 则, 解得, 因为,则, 所以, 因为,,且, 所以的图象关于对称, 所以, 故选:A 8、C 【解析】根据所给图象求出函数的解析式,即可求出. 【详解】设函数的周期为,由图像可知,则,故ω=3, 将代入解析式得, 则,所以, 令,代入解析式得, 又因为,解得, , . 故选:C. 【点睛】本题考查根据三角函数的部分图象求函数的解析式,属于基础题. 9、A 【解析】根据正方体的表面积,可求得正方体的棱长,进而求得体对角线的长度;由体对角线为外接球的直径,即可求得外接球的表面积 【详解】设正方体的棱长为

10、a 因为表面积为24,即 得a = 2 正方体的体对角线长度为 所以正方体的外接球半径为 所以球的表面积为 所以选A 【点睛】本题考查了立体几何中空间结构体的外接球表面积求法,属于基础题 10、C 【解析】分析函数的单调性,利用零点存在定理可得出结论. 【详解】由于函数为增函数,函数在和上均为增函数, 所以,函数在和上均为增函数. 对于A选项,当时,,,此时,, 所以,函数在上无零点; 对于BCD选项,当时,,, 由零点存在定理可知,函数的零点在区间内. 故选:C. 二、填空题:本大题共6小题,每小题5分,共30分。 11、 【解析】先求得幂函数的解析

11、式,根据函数的奇偶性、单调性来求得的取值范围. 【详解】设, 则, 所以, 在上递增,且为奇函数, 所以. 故答案为: 12、3 【解析】先利用条件找到,然后对减元,化为,利用基本不等式求最小值. 【详解】, ,,三点共线,. 则 当且仅当,即时等号成立. 故答案为:3. 【点睛】(1)在向量运算中:①构造向量加、减法的三角形法则和平行四边形法则;②树立“基底”意识,利用基向量进行线性运算; (2)基本不等式求最值要注意应用条件:“一正二定三相等”. 13、 【解析】利用二次不等式与相应的二次函数的关系,易得结果. 详解】∵不等式对任意实数都成立, ∴

12、 ∴<k<2 故答案为 【点睛】(1)二次函数图象与x轴交点的横坐标、二次不等式解集的端点值、一元二次方程的解是同一个量的不同表现形式 (2)二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,而二次函数又是“三个二次”的核心,通过二次函数的图象贯穿为一体.有关二次函数的问题,利用数形结合的方法求解,密切联系图象是探求解题思路的有效方法 14、 【解析】由题意可得弦心距d=,故半径r=5, 故圆C的方程为x2+(y+2)2=25, 故答案为x2+(y+2)2=25 15、53 【解析】 设,则,从而求出,再根据的取值范围,求出式子的最大值. 【详解】设,

13、 因为为圆上一点,则,且, 则 (当且仅当时取得最大值), 故答案为:53. 【点睛】本题属于圆与距离的应用问题,主要考查代数式的最值求法.解决此类问题一是要将题设条件转化为相应代数式;二是要确定代数式中变量的取值范围. 16、## 【解析】由基本不等式结合得出最值. 【详解】(当且仅当时,等号成立),即最小值为. 故答案为: 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(1);(2)单调递减区间,,单调增区间. 【解析】(1)根据三角函数奇偶性即可求出的值; (2)根据三角函数的图象变换关系求出的解析式,结合函数

14、的单调性进行求解即可 【详解】(1)∵函数是偶函数, ∴,, 又, ∴; (2)由(2)知, 将的图象向右平移个单位后,得到, 再将得到的图像上各点的横坐标伸长为原来的4倍(纵坐标不变), 得到, 当,, 即,时,的单调递减, 当,, 即,时,的单调递增, 因此在,的单调递减区间,, 单调增区间 18、(1) (2) 【解析】(1)根据的最值列方程组,解方程组求得,进而求得. (2)利用分离常数法,结合基本不等式求得的取值范围. 【小问1详解】 的开口向上,对称轴为, 所以在区间上有:, 即, 所以. 【小问2详解】 依题意,使得, 即,

15、由于,, 当且仅当时等号成立. 所以. 19、(1) (2) 【解析】(1)依题意可得,再根据同角三角函数的基本关系将弦化切,即可得到的方程,解得,再根据的范围求出; (2)根据同角三角函数的基本关系将弦化切,再代入计算可得; 【小问1详解】 解:由,有, 有,整理为, 有,解得或. 又由,有,可得; 【小问2详解】 解: . 20、(1); (2). 【解析】(1)根据二次函数的性质研究情况下的单调性和值域,根据对数复合函数的单调性及其开区间最值,列不等式求参数范围. (2)将问题化为在内有唯一零点,利用二次函数的性质求参数范围即可. 【小问1详解】 由题设,,, 所以在定义域上递增,在上递减,在上递增, 又在内有最小值, 当,即时,在上递减,上递增,此时的值域为,则; 所以,可得; 当,即时,在上递减,上递增,此时是值域上的一个子区间,则; 所以开区间上不存在最值. 综上,. 【小问2详解】 由,则,要使在 (1,2)内有唯一零点, 所以在内有唯一零点,又开口向上且对称轴为, 所以,可得. 21、(1);(2). 【解析】(1)根据对数的运算法则和对数恒等式,即可求解; (2)根据同角三角函数关系,由已知可得,代入所求式子,即可求解. 【详解】(1)原式; (2)∵ ∴ ∴.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服