ImageVerifierCode 换一换
格式:DOC , 页数:15 ,大小:620.50KB ,
资源ID:12791088      下载积分:12.58 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/12791088.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(2025-2026学年陕西省韩城市高一数学第一学期期末复习检测试题含解析.doc)为本站上传会员【zj****8】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2025-2026学年陕西省韩城市高一数学第一学期期末复习检测试题含解析.doc

1、2025-2026学年陕西省韩城市高一数学第一学期期末复习检测试题 考生请注意: 1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。 2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。 3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.已知点P(3,4) 在角的终边上,则的值为() A B. C. D. 2.如果,,那么直线不通过 A.第一

2、象限 B.第二象限 C.第三象限 D.第四象限 3.已知函数,则 A.0 B.1 C. D.2 4.函数的大致图像如图所示,则它的解析式是 A. B. C. D. 5.下列结论中正确的是() A.当时,无最大值 B.当时,的最小值为3 C.当且时, D.当时, 6.已知函数,若函数有四个零点,则的取值范围是 A. B. C. D. 7.在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足,其中星等为mk的星的亮度为Ek(k=1,2).已知太阳的星等是–26.7,天狼星的星等是–1.45,则太阳与天狼星的亮度的比值为 A.1010.1 B.1

3、0.1 C.lg10.1 D. 8.已知扇形的周长为8,圆心角为2弧度,则该扇形的面积为 A B. C. D. 9.设分别是x轴和圆:(x-2)2+(y-3)2=1上的动点,且点A(0,3),则的最小值为( ) A. B. C. D. 10.将函数的图象上所有的点向右平行移动个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是 A. B. C. D. 二、填空题:本大题共6小题,每小题5分,共30分。 11.将一个高为的圆锥沿其侧面一条母线展开,其侧面展开图是半圆,则该圆锥的底面半径为______ 12.已知函数是定义在上的奇函数

4、若时,,则时,__________ 13.关于函数f(x)=有如下四个命题: ①f(x)的图象关于y轴对称 ②f(x)的图象关于原点对称 ③f(x)的图象关于直线x=对称 ④f(x)的最小值为2 其中所有真命题的序号是__________ 14.若()与()互为相反数,则的最小值为______. 15.已知实数,执行如图所示的流程图,则输出的x不小于55的概率为________ 16.已知定义域为R的偶函数满足,当时,,则方程在区间上所有的解的和为___________. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.已知集

5、合,集合 (1)若“”是“”的充分条件,求实数的取值范围; (2)若,求实数的取值范围. 18.已知函数, (1)若函数在区间上存在零点,求正实数的取值范围; (2)若,,使得成立,求正实数的取值范围 19.如图,已知等腰梯形中,,,是的中点,,将沿着翻折成,使平面平面. (1)求证:平面; (2)求与平面所成的角; (3)在线段上是否存在点,使得平面,若存在,求出的值;若不存在,说明理由. 20.问题:是否存在二次函数同时满足下列条件:,的最大值为4,______?若存在,求出的解析式;若不存在,请说明理由.在①对任意都成立,②函数的图像关于轴对称,③函数的单调递减区

6、间是这三个条件中任选一个,补充在上面问题中作答.注:如果选择多个条件分别解答,按第一个解答计分. 21.已知函数的定义域为集合,关于的不等式的解集为,若,求实数的取值范围 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、D 【解析】利用三角函数的定义即可求出答案. 【详解】因为点P(3,4) 在角的终边上,所以, , 故选:D 【点睛】本题考查了三角函数的定义,三角函数诱导公式,属于基础题. 2、A 【解析】 截距 ,因此直线不通过第一象限,选A 3、B 【解析】 ,选B. 4、D 【解析

7、由图易知:函数图象关于y轴对称,函数为偶函数,排除A,B; 的图象为开口向上的抛物线,显然不适合, 故选D 点睛:识图常用方法 (1)定性分析法:通过对问题进行定性的分析,从而得出图象的上升(或下降)的趋势,利用这一特征分析解决问题; (2)定量计算法:通过定量的计算来分析解决问题; (3)函数模型法:由所提供的图象特征,联想相关函数模型,利用这一函数模型来分析解决问题 5、D 【解析】利用在单调递增,可判断A;利用均值不等式可判断B,D;取可判断C 【详解】选项A,由都在单调递增,故在单调递增,因此在上当时取得最大值,选项A错误; 选项B,当时,,故,当且仅当,即时等号

8、成立,由于,故最小值3取不到,选项B错误; 选项C,令,此时,不成立,故C错误; 选项D,当时,,故,当且仅当,即时,等号成立,故成立,选项D正确 故选:D 6、B 【解析】不妨设,的图像如图所示, 则,, 其中, 故,也就是, 则, 因,故. 故选:B. 【点睛】函数有四个不同零点可以转化为的图像与动直线有四个不同的交点,注意函数的图像有局部对称性,而且还是倒数关系. 7、A 【解析】由题意得到关于的等式,结合对数的运算法则可得亮度的比值. 【详解】两颗星的星等与亮度满足,令, . 故选A. 【点睛】本题以天文学问题为背景,考查考生的数学应用意识、信息

9、处理能力、阅读理解能力以及指数对数运算. 8、A 【解析】利用弧长公式、扇形的面积计算公式即可得出 【详解】设此扇形半径为r,扇形弧长为l=2r 则2r+2r=8,r=2, ∴扇形的面积为r= 故选A 【点睛】本题考查了弧长公式、扇形的面积计算公式,属于基础题 9、B 【解析】取点A关于x轴的对称点C(0,-3),得到,最小值为. 故答案为B. 点睛:这个题目考查的是直线和圆的位置关系,一般直线和圆的题很多情况下是利用数形结合来解决的,联立的时候较少;再者在求圆上的点到直线或者定点的距离时,一般是转化为圆心到直线或者圆心到定点的距离,再加减半径,分别得到最大值和最小值

10、10、C 【解析】将函数的图象上所有的点向右平行移动个单位长度,所得函数图象的解析式为y=sin(x-); 再把所得图象上各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是.故选C. 二、填空题:本大题共6小题,每小题5分,共30分。 11、1 【解析】设该圆锥的底面半径为r,推导出母线长为2r,再由圆锥的高为,能求出该圆锥的底面半径 【详解】 设该圆锥的底面半径为r, 将一个高为的圆锥沿其侧面一条母线展开,其侧面展开图是半圆, , 解得, 圆锥的高为, , 解得 故答案为1 【点睛】本题考查圆锥的底面半径的求法,考查圆锥性质、圆等基础知识,考

11、查运算求解能力,是基础题 12、 【解析】函数是定义在上的奇函数,当时,当时,则,,故答案为. 13、②③ 【解析】利用特殊值法可判断命题①的正误;利用函数奇偶性的定义可判断命题②的正误;利用对称性的定义可判断命题③的正误;取可判断命题④的正误.综合可得出结论. 【详解】对于命题①,,,则, 所以,函数的图象不关于轴对称,命题①错误; 对于命题②,函数的定义域为,定义域关于原点对称, , 所以,函数的图象关于原点对称,命题②正确; 对于命题③,, ,则, 所以,函数的图象关于直线对称,命题③正确; 对于命题④,当时,,则, 命题④错误. 故答案为:②③. 【点睛

12、本题考查正弦型函数的奇偶性、对称性以及最值的求解,考查推理能力与计算能力,属于中等题. 第ⅠⅠ卷 14、2 【解析】有题设得到,利用基本不等式求得最小值. 【详解】由题知,,则,, 则,当且仅当时等号成立, 故答案为:2 15、 【解析】设实数x∈[1,9], 经过第一次循环得到x=2x+1,n=2, 经过第二循环得到x=2(2x+1)+1,n=3, 经过第三次循环得到x=2[2(2x+1)+1]+1,n=4此时输出x, 输出的值为8x+7, 令8x+7⩾55,得x⩾6, 由几何概型得到输出的x不小于55的概率为. 故答案为. 16、 【解析】根据给定条件,

13、分析函数,函数的性质,再在同一坐标系内作出两个函数图象,结合图象计算作答. 【详解】当时,,则函数在上单调递减,函数值从减到0, 而是R上的偶函数,则函数在上单调递增,函数值从0增到, 因,有,则函数的周期是2,且有,即图象关于直线对称, 令,则函数在上递增,在上递减,值域为,且图象关于直线对称, 在同一坐标系内作出函数和的图象,如图, 观察图象得,函数和在上的图象有8个交点,且两两关于直线对称, 所以方程在区间上所有解的和为. 故答案为: 【点睛】方法点睛:函数零点个数判断方法:(1)直接法:直接求出f(x)=0的解;(2)图象法:作出函数f(x)的图象,观察与x轴

14、公共点个数或者将函数变形为易于作图的两个函数,作出这两个函数的图象,观察它们的公共点个数. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(1); (2). 【解析】(1)由已知可得,可得出关于实数的不等式组,由此可解得实数的取值范围; (2)分、两种情况讨论,根据可得出关于实数的不等式(组),综合可得出实数的取值范围. 【小问1详解】 解:由已知得,故有, 解得,故的取值范围为. 【小问2详解】 解:当时,则,解得; 当时,则或,解得. ∴的取值范围为. 18、(1) (2) 【解析】(1)结合函数的单调性及零

15、点存在定理可得结论; (2)由题意可得在,上,,由函数的单调性求得最值,解不等式可得所求范围 【小问1详解】 函数, 因为在区间上单调递减,又,所以在区间上单调递减,所以在区间上单调递减,若在区间上存在零点,则. 【小问2详解】 存在,,,使得成立, 等价为在,上, 由在,递增,可得的最小值为, 又,所以在,递减,可得的最大值为, 由,解得,所以; 综上可得,的范围是 19、 (1)证明见解析;(2)30°;(3)存在,. 【解析】(1)首先根据已知条件并结合线面垂直的判定定理证明平面,再证明即可求解; (2)根据(1)中结论找出所求角,再结合已知条件即可求解;

16、3)首先假设存在,然后根据线面平行的性质以及已知条件,看是否能求出点的具体位置,即可求解. 【详解】(1)因为,是的中点,所以, 故四边形是菱形,从而, 所以沿着翻折成后,, 又因为, 所以平面, 由题意,易知,, 所以四边形是平行四边形,故, 所以平面; (2) 因为平面, 所以与平面所成的角为, 由已知条件,可知,, 所以是正三角形,所以, 所以与平面所成的角为30°; (3) 假设线段上是存在点,使得平面, 过点作交于,连结,,如下图: 所以,所以,,,四点共面, 又因平面,所以, 所以四边形为平行四边形,故, 所以为中点, 故在线段上存在点

17、使得平面,且. 20、若选择①,;若选择②,;若选择③, 【解析】由可得,由所选的条件可得的对称轴,再由的最大值为4,可得关于的方程,求解即可. 【详解】解:由,可得:, ; 若选择①, 对任意都成立, 故的对称轴为, 即, 又的最大值为4, 且, 解得:, 故; 若选择②, 函数图像关于轴对称, 故的对称轴为, 即, 又的最大值为4, 且, 解得:, 故; 若选择③, 函数的单调递减区间是, 故的对称轴为, 即, 又的最大值为4, 且, 解得:, 故. 21、. 【解析】对数真数大于零,所以,解得.为增函数,所以.由于是的子集,所以. 试题解析: 要使有意义,则,解得, 即 由,解得, 即 ∴解得 故实数的取值范围是 考点:分式不等式,子集的概念. 【方法点晴】注意一元二次方程、二次函数、二次不等式的联系,解二次不等式应尽量结合二次函数图象来解决,培养并提高数形结合的分析能力;当时,需要计算相应二次方程的根,其解集是用根表示,对于含参数的二次不等式,需要针对开口方向、判别式的符号、根的大小分类讨论.解决恒成立问题一定要清楚选谁为主元,谁是参数.一般地,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数.分式不等式转化为一元二次不等式来求解.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服