ImageVerifierCode 换一换
格式:DOC , 页数:14 ,大小:1.22MB ,
资源ID:12791086      下载积分:12.58 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/12791086.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(广西南宁八中2026届数学高一第一学期期末学业质量监测模拟试题含解析.doc)为本站上传会员【cg****1】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

广西南宁八中2026届数学高一第一学期期末学业质量监测模拟试题含解析.doc

1、广西南宁八中2026届数学高一第一学期期末学业质量监测模拟试题 注意事项 1.考试结束后,请将本试卷和答题卡一并交回. 2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符. 4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗. 一、选择题

2、本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.如图,在正四棱柱中,,点是平面内的一个动点,则三棱锥的正视图和俯视图的面积之比的最大值为 A B. C. D. 2.已知函数(ω>0),对任意x∈R,都有≤,并且在区间上不单调,则ω的最小值是(  ) A.6 B.7 C.8 D.9 3.不等式的解集为( ) A. B. C. D. 4.若集合,,则( ) A. B. C. D. 5.已知集合,,则() A. B. C. D. 6.已知函数,那么的值为() A.25 B.16 C.9 D.3

3、 7.已知是定义在上的减函数,若对于任意,均有,,则不等式的解集为() A. B. C. D. 8.的零点所在区间为( ) A. B. C. D. 9.给定函数:①;②;③;④,其中在区间上单调递减函数序号是( ) A.①② B.②③ C.③④ D.①④ 10.已知,,,则,,的大小关系是( ) A. B. C. D. 二、填空题:本大题共6小题,每小题5分,共30分。 11.已知正实数x,y满足,则的最小值为______ 12.已知,则的最小值为_______________. 13.已知任何一个正实数都可以表示成,则的取值范围是_____

4、的位数是________________.(参考数据) 14.若,则__________ 15.若,则________. 16.已知圆及直线,当直线被圆截得的弦长为时,的值等于________. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.如图,某人计划用篱笆围成一个一边靠墙(墙的长度没有限制)的矩形生态种植园.设生态种植园的长为,宽为 (1)若生态种植园面积为,则为何值时,可使所用篱笆总长最小? 18.如图,在中,为边上的一点,,且与的夹角为. (1)设,求,的值; (2)求的值. 19.已知函数

5、为R上的奇函数,其中a为常数,e是自然对数的底数. (1)求函数的解析式; (2)求函数在上的最小值,并求取最小值时x的值. 20.已知向量,,. (Ⅰ)若关于的方程有解,求实数的取值范围; (Ⅱ)若且,求. 21.已知, 当时,求函数在上的最大值; 对任意的,,都有成立,求实数a的取值范围 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、B 【解析】由题意可知,P在正视图中的射影是在C1D1上, AB在正视图中,在平面CDD1C1上的射影是CD,P的射影到CD的距离是AA1=2, 所以三棱

6、锥P﹣ABC的正视图的面积为 三棱锥P﹣ABC的俯视图的面积的最小值为, 所以三棱锥P﹣ABC的正视图与俯视图的面积之比的最大值为, 故选B 点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽. 2、B 【解析】根据,得为函数的最大值,建立方程求出的值,利用函数的单调性进行判断即可 【详解】解:对任意,都有, 为函数的最大值,则,, 得,, 在区间,上不单调, , 即,即,得, 则当时,最小

7、 故选:B. 3、D 【解析】化简不等式并求解即可. 【详解】将不等式变形为,解此不等式得或. 因此,不等式解集为 故选:D 【点睛】本题考查一元二次不等式解法,考查学生计算能力,属于基础题. 4、C 【解析】 根据交集直接计算即可. 【详解】因为,, 所以, 故选:C 5、D 【解析】先求出集合B,再求出两集合的交集即可 【详解】由,得, 所以, 因为, 所以, 故选:D 6、C 【解析】根据分段函数解析式求得. 【详解】因为,所以. 故选:C 7、D 【解析】根据已知等式,结合函数的单调性进行求解即可. 【详解】令时,, 由, 因

8、为是定义在上的减函数, 所以有, 故选:D 8、C 【解析】根据零点存在性定理进行判断即可 【详解】,,, ,根据零点存在性定理可得,则的零点所在区间为 故选C 【点睛】本题考查零点存性定理,属于基础题 9、B 【解析】①,为幂函数,且的指数,在上为增函数;②,,为对数型函数,且底数,在上为减函数;③,在上为减函数,④为指数型函数,底数在上为增函数,可得解. 【详解】①,为幂函数,且的指数,在上为增函数,故①不可选; ②,,为对数型函数,且底数,在上为减函数,故②可选; ③,在上为减函数,在上为增函数,故③可选; ④为指数型函数,底数在上为增函数,故④不可选; 综

9、上所述,可选的序号为②③, 故选B. 【点睛】本题考查基本初等函数的单调性,熟悉基本初等函数的解析式、图像和性质是解决此类问题的关键,属于基础题. 10、B 【解析】分别求出的范围,然后再比较的大小. 【详解】,, , , , , 并且 , , 综上可知 故选:B 【点睛】本题考查指对数和三角函数比较大小,意在考查转化与化归的思想和基础知识,属于基础题型. 二、填空题:本大题共6小题,每小题5分,共30分。 11、 【解析】令,转化条件为方程有解,运算可得 【详解】令,则, 化简得, 所以,解得或(舍去), 当时,,符合题意, 所以得最

10、小值为. 故答案为:. 12、##225 【解析】利用基本不等式中“1”的妙用即可求解. 【详解】解:因为, 所以,当且仅当,即时等号成立, 所以的最小值为. 故答案为:. 13、 ①. ②. 【解析】根据对数函数的单调性及对数运算、对数式指数式的转化即可求解. 【详解】因为,所以,由,故知,共有31位. 故答案为:;31 14、 【解析】先求出的值,然后再运用对数的运算法则求解出和的值,最后求解答案. 【详解】若,则,所以. 故答案为: 【点睛】本题考查了对数的运算法则,熟练掌握对数的各运算法则是解题关键,并能灵活运用法则来解题,并且要计算正确,本

11、题较为基础. 15、 【解析】 由,根据三角函数的诱导公式进行转化求解即可. 详解】, , 则, 故答案为:. 16、 【解析】结合题意,得到圆心到直线的距离,结合点到直线距离公式,计算a,即可 【详解】结合题意可知圆心到直线的距离,所以结合点到直线距离公式 可得,结合,所以 【点睛】考查了直线与圆的位置关系,考查了点到直线距离公式,难度中等 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(1)为,为; (2). 【解析】(1)根据题意,可得,篱笆总长为,利用基本不等式可求出的最小值,即可得出对应的值; (2)由题

12、可知,再利用整体乘“1”法和基本不等式,求得,进而得出的最小值. 【小问1详解】 解:由已知可得,而篱笆总长为, 又,则, 当且仅当,即时等号成立, 菜园的长为,宽为时,可使所用篱笆总长最小 【小问2详解】 解:由已知得,, 又, ,当且仅当,即时等号成立, 的最小值是 18、(1),;(2). 【解析】(1)由向量的加减运算,可得,进而可得答案. (2)用表示,利用向量数量积公式,即可求得结果. 【详解】(1)因,所以. . 又, 又因为、不共线,所以,, (2)结合(1)可得: . , 因为,,且与的夹角为. 所以. 【点睛】本题考查了向量

13、的加减运算、平面向量基本定理、向量的数量积运算等基本数学知识,考查了运算求解能力和转化的数学思想,属于基础题目. 19、(1) (2)在上的最小值是-4,取最小值时x的值为. 【解析】(1)根据函数为R上的奇函数,由求解; (2)由(1)得到,令,转化为二次函数求解. 【小问1详解】 解:因为函数为R上的奇函数, 所以, 解得, 所以,经检验满足题意; 【小问2详解】 由(1)知:, , 另,因为t在上递增,则, 函数转化为, 当时,取得最小值-4, 此时,即, 解得,则, 所以在上的最小值是-4,取最小值时x的值为. 20、 (1) (2) 【解析

14、 (Ⅰ)向量,,,所以. 关于的方程有解,即关于的方程有解.因为,所以当时,方程有解,即解得实数的取值范围; (Ⅱ)因为,所以,即.当时,,由,解得当时,,由,解得. 试题解析: (Ⅰ)∵向量,,, ∴. 关于的方程有解,即关于的方程有解. ∵, ∴当时,方程有解. 则实数的取值范围为. (Ⅱ)因为,所以,即. 当时,,. 当时,,. 21、(1)3;(2). 【解析】(1)由,得出函数的解析式,根据函数图象,得函数的单调性,即可得到函数在上的最大值;(2)对任意的,都有成立,等价于对任意的,成立,再对进行讨论,即可求出实数的取值范围. 试题解析:(1)当时,,

15、 结合图像可知,函数在上是增函数,在上是减函数,在上是增函数, 又,, 所以函数在上的最大值为3. (2) ,由题意得:成立. ①时,,函数在上是增函数, 所以,, 从而,解得, 故. ②因为,由,得:, 解得:或(舍去) 当时,,此时,, 从而成立, 故 当时,,此时,, 从而成立, 故, 综上所述:. 点睛:(1)对于形如,对任意的,恒成立的问题,可转化为恒成立的问题,然后根据函数的单调性将函数不等式转化为一般不等式处理;(2)解决不等式的恒成立问题时,要转化成函数的最值问题求解,解题时可选用分离参数的方法,若参数无法分离,则可利用方程根的分布的方法解决,解题时注意区间端点值能否取等号

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服