ImageVerifierCode 换一换
格式:DOC , 页数:13 ,大小:447KB ,
资源ID:12790936      下载积分:12.58 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/12790936.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(江西省南昌市第十中学2026届数学高一上期末预测试题含解析.doc)为本站上传会员【cg****1】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

江西省南昌市第十中学2026届数学高一上期末预测试题含解析.doc

1、江西省南昌市第十中学2026届数学高一上期末预测试题 注意事项: 1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。 2.答题时请按要求用笔。 3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。 4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。 5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.若且,则下列不等式中一定成立的是 A. B.

2、 C. D. 2.若,,,则a,b,c的大小关系为() A. B. C. D. 3.设,则“”是“”的() A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 4.设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),则f(-1)=(  ) A.3 B.1 C.-1 D.-3 5.已知函数,则函数在上单调递增,是恒成立的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件 6.函数的增区间是 A. B. C. D. 7.现对有如下观测数据 3 4

3、5 6 7 16 15 13 14 17 记本次测试中,两组数据的平均成绩分别为,两班学生成绩的方差分别为,,则() A., B., C., D., 8.设函数,则下列结论不正确的是() A.函数的值域是; B.点是函数的图像的一个对称中心; C.直线是函数的图像的一条对称轴; D.将函数的图像向右平移个单位长度后,所得图像对应的函数是偶函数 9.函数的减区间为() A. B. C. D. 10.已知集合,,那么( ) A. B. C. D. 二、填空题:本大题共6小题,每小题5分,共30分。 11.使三角式成立的的取值范围为______

4、 12.若角的终边与以原点为圆心的单位圆交于点,则的值为___________. 13.在矩形ABCD中,AB=2,AD=1.设 ①当时,t=___________; ②若,则t的最大值是___________ 14.若函数在区间上有两个零点,则实数的取值范围是_______. 15.下面有六个命题: ①函数是偶函数; ②若向量的夹角为,则; ③若向量的起点为,终点为,则与轴正方向的夹角的余弦值是; ④终边在轴上的角的集合是; ⑤把函数的图像向右平移得到的图像; ⑥函数在上是减函数. 其中,真命题的编号是__________.(写出所有真命题的编号) 16.,

5、且,则的最小值为______. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.设集合. (1)当时,求实数的取值范围; (2)当时,求实数的取值范围. 18.已知函数.. (1)判断函数的奇偶性并证明; (2)若函数在区间上单调递减,且值域为,求实数的取值范围 19.已知函数. (1)求函数的定义域; (2)若对任意恒有,求实数的取值范围. 20.已知函数 (1)求的定义域; (2)判断的奇偶性,并说明理由; (3)设,证明: 21.已知函数. (1)若函数在上至少有一个零点,求的取值范围; (2)若

6、函数在上最大值为3,求的值. 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、D 【解析】利用不等式的性质逐个检验即可得到答案. 【详解】A,a>b且c∈R,当c小于等于0时不等式不成立,故错误; Ba,b,c∈R,且a>b,可得a﹣b>0,当c=0时不等式不成立,故错误;, C,举反例,a=2,b=-1满足a>b,但不满足,故错误; D,将不等式化简即可得到a>b,成立, 故选D. 【点睛】本题主要考查不等式的性质以及排除法的应用,属于简单题.用特例代替题设所给的一般性条件,得出特殊结论,然后对各

7、个选项进行检验,从而做出正确的判断,这种方法叫做特殊法.若结果为定值,则可采用此法.特殊法是“小题小做”的重要策略.常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等 2、A 【解析】根据指数函数和对数函数的单调性进行判断即可. 【详解】∵,∴,∴,,, ∴. 故选:A 3、B 【解析】分别求出两个不等式的的取值范围,根据的取值范围判断充分必要性. 【详解】等价于,解得:;等价于,解得:,可以推出,而不能推出,所以是的必要不充分条件,所以“”是“”的必要不充分条件 故选:B 4、D 【解析】∵f(x)是定义在R上的奇函数, 当x≥0时,f(x)=2x

8、2x+b(b为常数), ∴f(0)=1+b=0, 解得b=-1 ∴f(1)=2+2-1=3 ∴f(-1)=-f(1)=-3 故选D 5、A 【解析】根据充分、必要条件的定义证明即可. 【详解】因为函数在上单调递增,则, 恒成立,即恒成立,,即. 所以 “”是“”的充分不必要条件. 故选:A. 6、A 7、C 【解析】利用平均数以及方差的计算公式即可求解. 【详解】,, , ,故, 故选:C 【点睛】本题考查了平均数与方差,需熟记公式,属于基础题. 8、B 【解析】根据余弦函数的性质一一判断即可; 【详解】解:因为,, 所以,即函数的值域是,故A正

9、确; 因为,所以函数关于对称,故B错误; 因为,所以函数关于直线对称,故C正确; 将函数的图像向右平移个单位长度得到为偶函数,故D正确; 故选:B 9、D 【解析】先气的函数的定义域为,结合二次函数性质和复合函数的单调性的判定方法,即可求解. 【详解】由题意,函数有意义,则满足, 即,解得,即函数的定义域为, 令,可得其开口向下,对称轴的方程为, 所以函数在区间单调递增,在区间上单调递减, 根据复合函数的单调性,可得函数在上单调递减, 即的减区间为. 故选:D. 10、B 【解析】解方程确定集合,然后由交集定义计算 【详解】,∴ 故选:B 二、填空题:本

10、大题共6小题,每小题5分,共30分。 11、 【解析】根据同角三角函数间的基本关系,化为正余弦函数,即可求出. 【详解】因为,, 所以, 所以, 所以终边在第三象限,. 【点睛】本题主要考查了同角三角函数间的基本关系,三角函数在各象限的符号,属于中档题. 12、## 【解析】直接根据三角函数定义求解即可. 【详解】解:因为角的终边与以原点为圆心的单位圆交于点, 所以根据三角函数单位圆的定义得 故答案为: 13、 ①.0 ②. 【解析】利用坐标法可得,结合条件及完全平方数的最值即得. 【详解】由题可建立平面直角坐标系,则, ∴, ∴, ∴当时,

11、 因为,要使t最大, 可取,即时, t 取得最大值是. 故答案为:0;. 14、 【解析】由题意根据数形结合,只要,并且对称轴在之间,,解不等式组即可 【详解】由题意,要使函数区间上有两个零点, 只要,即,解得,故答案为 【点睛】本题主要考查了二次函数的性质,函数零点的分布,关键是结合二次函数图象等价得到不等式组,常见的形式有考虑端点值处函数值的符号,对称轴与所给区间的关系,对称轴处函数值的符号等,属于中档题. 15、①⑤ 【解析】对于①函数,则=,所以函数是偶函数;故①对; 对于②若向量的夹角为,根据数量积定义可得,此时的向量应该为非零向量;故②错; 对于③=,所

12、以与轴正方向的夹角的余弦值是-;故③错; 对于④终边在轴上的角的集合是;故④错; 对于⑤把函数的图像向右平移得到,故⑤对; 对于⑥函数=在上是增函数.故⑥错; 故答案为①⑤. 16、3 【解析】根据基本不等式“1”的用法求解即可. 【详解】解:解法一:因为 所以 当且仅当时等号成立. 解法二:设,,则, 所以 当且仅当时等号成立. 故答案为: 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(1) (2) 【解析】(1)化简集合A,B,由,得,转化为不等式关系,解之即可;(2)由,得到或,解之即可. 试题解析: (

13、1), ,,即 . (2)法一:,或,即 法二:当时,或解得或, 于是时,即 18、(1)奇函数(2) 【解析】(1)先求定义域,再研究与的关系得函数奇偶性;(2)由函数在上的单调性,得函数的值域,又因为值域为,转化为关于和的关系式,由二次函数的图像与性质求的取值范围 【详解】(1)函数定义域为,且.所以函数为奇函数 (2)考察为单调增函数,利用复合函数单调性得到,所以,, 即,即为方程的两个根,且, 令,满足条件,解得. 【点睛】判断函数的奇偶性,要先求定义域,判断定义域是否关于原点对称再求与的关系;计算函数的值域,要先根据函数的定义域及单调性求解 19、(1)答案见

14、解析; (2). 【解析】(1)根据对数的真数为正即可求解; (2)对任意恒有对恒成立,参变分离即可求解a的范围. 【小问1详解】 由得,,等价于, ∵方程的, 当,即时,恒成立,解得, 当,即时,原不等式即为,解得且; 当,即,又,即时, 方程的两根、, ∴解得或, 综上可得当时,定义域为, 当时,定义域为且, 当时,定义域为或; 【小问2详解】 对任意恒有,即对恒成立, ∴,而,在上是减函数, ∴, 所以实数的取值范围为. 20、(1) (2)偶函数;理由见解析 (3)证明见解析 【解析】(1)根据对数函数的真数大于0建立不等式

15、求解; (2)根据函数的奇偶性定义判断即可; (3)利用不等式的性质及对数函数的单调性证明即可. 【小问1详解】 因为,即, 所以函数的定义域是 【小问2详解】 因为,都有, 且, 所以函数为偶函数 【小问3详解】 因为, 所以 所以 所以 因为是增函数, 所以 因为,, 所以 21、 (1) ;(2)或. 【解析】(1)由函数在至少有一个零点,方程至少有一个实数根,,解出即可;(2)通过对区间端点与对称轴顶点的横坐标的大小比较,再利用二次函数的单调性即可得出函数在上的最大值,令其等于可得结果. 试题解析:(1)由. (2)化简得,当,即时,;当,即时,, ,(舍);当,即时,,综上,或.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服