ImageVerifierCode 换一换
格式:DOC , 页数:12 ,大小:504.50KB ,
资源ID:12790914      下载积分:12.58 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/12790914.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(2025年河南省上蔡一高数学高一上期末学业质量监测模拟试题含解析.doc)为本站上传会员【y****6】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2025年河南省上蔡一高数学高一上期末学业质量监测模拟试题含解析.doc

1、2025年河南省上蔡一高数学高一上期末学业质量监测模拟试题 注意事项 1.考试结束后,请将本试卷和答题卡一并交回. 2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符. 4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗. 一、选择题:本

2、大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.命题,一元二次方程有实根,则( ) A.,一元二次方程没有实根 B.,一元二次方程没有实根 C.,一元二次方程有实根 D.,一元二次方程有实根 2.已知函数是定义在实数集上的不恒为零的偶函数,且对任意实数都有,则的值为 A. B. C. D. 3.在特定条件下,篮球赛中进攻球员投球后,篮球的运行轨迹是开口向下的抛物线的一部分.“盖帽”是一种常见的防守手段,防守队员在篮球上升阶段将球拦截即为“盖帽”,而防守队员在篮球下降阶段将球拦截则属“违规”.对于某次投篮而言,如果忽略其他因

3、素的影响,篮球处于上升阶段的水平距离越长,则被“盖帽”的可能性越大.收集几次篮球比赛的数据之后,某球员投篮可以简化为下述数学模型:如图所示,该球员的投篮出手点为P,篮框中心点为Q,他可以选择让篮球在运行途中经过A,B,C,D四个点中的某一点并命中Q,忽略其他因素的影响,那么被“盖帽”的可能性最大的线路是() A.P→A→Q B.P→B→Q C.P→C→Q D.P→D→Q 4.函数=的部分图像如图所示,则的单调递减区间为 A. B. C. D. 5.设函数,则的值是 A.0 B. C.1 D.2 6.设,为正数,且,则的最小值为() A. B. C. D. 7.已

4、知函数,有下面四个结论:①的一个周期为 ;②的图像关于直线对称;③当时,的值域是;④在(单调递减,其中正确结论的个数是( ) A.1 B.2 C.3 D.4 8. “”是“的最小正周期为”的() A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 9.已知函数,则该函数的零点位于区间() A. B. C. D. 10.设集合A={1,3,5},B={1,2,3},则A∪B=(  ) A. B. C.3, D.2,3, 二、填空题:本大题共6小题,每小题5分,共30分。 11.已知函数对于任意,都有成立,则___________ 1

5、2.求方程在区间内的实数根,用“二分法”确定的下一个有根的区间是____________. 13.已知,则__________. 14.已知是定义在R上的奇函数,当时,,则当时,______ 15.已知圆心为(1,1),经过点(4,5),则圆标准方程为_____________________. 16.已知点,若,则点的坐标为_________. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.已知函数. (1)判断函数的奇偶性,并证明; (2)设函数,若对任意的,总存在使得成立,求实数m的取值范围. 18.已知函数() (1)求在区

6、间上的最小值; (2)设函数,用定义证明:在上是减函数 19.设全集为,,,求: (1) (2) (3) 20.已知是定义在上的偶函数,当时,. (1)求在时的解析式; (2)若,在上恒成立,求实数的取值范围. 21.已知全集,函数的定义域为集合,集合 (1)若求: (2)设;.若是的充分不必要条件,求实数的取值范围. 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、B 【解析】根据全称命题的否定为特称命题可得出. 【详解】因为全称命题的否定为特称命题,

7、所以,一元二次方程没有实根. 故选:B. 2、A 【解析】方法一: 当且时,由,得, 令,则是周期为的函数, 所以, 当时,由得,, 又是偶函数,所以, 所以, 所以,所以.选A 方法二: 当时,由得,,即, 同理, 所以 又当时,由,得, 因为是偶函数, 所以, 所以.选A 点睛:解决抽象函数问题的两个注意点: (1)对于抽象函数的求函数值的问题,可选择定义域内的恰当的值求解,即要善于用取特殊值的方法求解函数值 (2)由于抽象函数的解析式未知,故在解题时要合理运用条件中所给出的性质解题,有时在解题需要作出相应的变形 3、B 【解析】定性分析即可

8、得到答案 【详解】B、D两点,横坐标相同,而D点的纵坐标大于B点的纵坐标,显然,B点上升阶段的水平距离长;A、B两点,纵坐标相同,而A点的横坐标小于B点的横坐标,等经过A点的篮球运行到与B点横坐标相同时,显然在B点上方,故B点上升阶段的水平距离长;同理可知C点路线优于A点路线,综上:P→B→Q是被“盖帽”的可能性最大的线路. 故选:B 4、D 【解析】由五点作图知,,解得,,所以,令,解得<<,,故单调减区间为(,),,故选D. 考点:三角函数图像与性质 5、C 【解析】,所以,故选C 考点:分段函数 6、B 【解析】将拼凑为,利用“1”的妙用及其基本不等式求解即可. 【

9、详解】∵, ∴,即, ∴ ,当且仅当,且时,即 ,时等号成立 故选:. 7、B 【解析】函数周期.,故是函数的对称轴.由于,故③错误.,函数在不单调.故有个结论正确. 【点睛】本题主要考查三角函数图像与性质,包括了周期性,对称性,值域和单调性.三角函数的周期性,其中正弦和余弦函数的周期都是利用公式来求解,而正切函数函数是利用公式来求解.三角函数的对称轴是使得函数取得最大值或者最小值的地方.对于选择题 8、A 【解析】根据函数的最小正周期求得,再根据充分条件和必要条件的定义即可的解. 【详解】解:由的最小正周期为,可得,所以, 所以“”是“的最小正周期为”的充分不必要条件

10、 故选:A. 9、B 【解析】分别将选项中区间的端点代入,利用零点存在性定理判断即可 【详解】由题,,,, 所以, 故选:B 【点睛】本题考查利用零点存在性定理判断零点所在区间,属于基础题 10、D 【解析】直接利用集合运算法则得出结果 【详解】因A=(1,3,5},B={1,2,3}, 所以则A∪B=2,3,,故选D 【点睛】本题考查集合运算,注意集合中元素的的互异性,无序性 二、填空题:本大题共6小题,每小题5分,共30分。 11、## 【解析】由可得时,函数取最小值,由此可求. 【详解】,其中,.因为,所以,,解得,,则 故答案为:. 12、

11、解析】根据二分法的步骤可求得结果. 【详解】令, 因为,,, 所以下一个有根的区间是. 故答案为: 13、3 【解析】由同角三角函数商数关系及已知等式可得,应用诱导公式有,即可求值. 【详解】由题设,,可得, ∴. 故答案为:3 14、 【解析】根据奇函数的性质求解 【详解】时,,是奇函数, 此时 故答案为: 15、 【解析】设出圆的标准方程,代入点的坐标,求出半径,求出圆的标准方程 【详解】设圆的标准方程为(x-1)2+(y-1)2=R2, 由圆经过点(4,5)得R2=25,从而所求方程为(x-1)2+(y-1)2=25, 故答案为(x-1)2+(y-

12、1)2=25 【点睛】本题主要考查圆的标准方程,利用了待定系数法,关键是确定圆的半径 16、(0,3) 【解析】设点的坐标,利用,求解即可 【详解】解:点,,, 设,,, ,,解得, 点的坐标为, 故答案为: 【点睛】本题考查向量的坐标运算,向量相等的应用,属于基础题 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(1)偶函数,证明见解析 (2) 【解析】(1)为偶函数,利用偶函数定义证明即可; (2)转化为,利用均值不等式可求解的最大值,利用一次函数性质求解的最大值,分析即得解. 【小问1详解】 为偶函数 证明:

13、 故,解得 的定义域为,关于原点对称 , 为偶函数 【小问2详解】 若对任意的,总存在,使得成立 则 又,当且仅当,即取等号 所以 所求实数m的取值范围为 18、(1);(2)证明见解析. 【解析】(1)由已知得函数的对称轴,开口向上,分别讨论,,三种情况求得最小值; (2)利用函数单调性的定义可得证 【详解】(1)因为的对称轴,开口向上,当,即时,; 当,即时,; 当,即时,,所以 ; (2),设,则,, 所以, 所以, 所以在上是减函数 【点睛】方法点睛:利用定义判断函数单调性的步骤: 1、在区间D上,任取,令; 2、作差;

14、3、对的结果进行变形处理; 4、确定符号的正负; 5、得出结论 19、 (1) ;(2) ;(3) . 【解析】(1)根据集合的交集的概念得到结果;(2)根据集合的补集的概念得到结果;(3)先求AB的并集,再根据补集的概念得到结果. 解析: (1) (2) (3) 20、(1); (2). 【解析】(1)利用函数的奇偶性结合条件即得; (2)由题可知在上恒成立,利用函数的单调性可求,即得. 【小问1详解】 ∵当时,, ∴当时,, ∴,又是定义在上的偶函数, ∴, 故当时,; 【小问2详解】 由在上恒成立, ∴在上恒成立, ∴ 又∵与在上单调递增, ∴, ∴,解得或, ∴实数的取值范围为. 21、(1);(2)或. 【解析】(1)分别求解集合,再求补集和交集即可; (2)由,根据条件得是的真子集,进而得或. 【详解】(1)由得,解得,所以, 当时,, 所以. (2), 因为是的充分不必要条件,所以是的真子集, 所以或, 解得或

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服