ImageVerifierCode 换一换
格式:DOC , 页数:15 ,大小:525.50KB ,
资源ID:12790898      下载积分:12.58 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/12790898.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(江苏省常州市教育学会学业水平监测(2025-2026学年数学高一上期末考试模拟试题含解析.doc)为本站上传会员【y****6】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

江苏省常州市教育学会学业水平监测(2025-2026学年数学高一上期末考试模拟试题含解析.doc

1、江苏省常州市教育学会学业水平监测(2025-2026学年数学高一上期末考试模拟试题 考生须知: 1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。 2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。 3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.已知,,,则a、b、c的大小顺序为() A. B. C. D. 2.一种药在病人

2、血液中量低于时病人就有危险,现给某病人的静脉注射了这种药,如果药在血液中以每小时80%的比例衰减,那么应再向病人的血液中补充这种药不能超过的最长时间为() A.1.5小时 B.2小时 C.2.5小时 D.3小时 3.等于 A. B. C. D. 4.下列各组中的两个函数表示同一函数的是(  ) A. B.y=lnx2,y=2lnx C D. 5.空间直角坐标系中,点关于平面的对称点为点,关于原点的对称点为点,则间的距离为 A. B. C. D. 6.设m,n为两条不同的直线,a,b为两个不同的平面,则下列结论正确的是() A.若,,则 B.若,,,则 C.若,,,

3、则 D.若,,,则 7.已知为角终边上一点,则() A. B.1 C.2 D.3 8.函数的最小值为( ) A. B.3 C. D. 9.已知幂函数的图象过点,则的值为 A. B. C. D. 10. “是第一或第二象限角”是“”的() A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 二、填空题:本大题共6小题,每小题5分,共30分。 11.已知,若,则实数的取值范围为__________ 12.若,,,则的最小值为___________. 13.集合,则____________ 14.函数的定义域为__________

4、 15.将正方形ABCD沿对角线BD折成直二面角A-BD-C,有如下四个结论 ①AC⊥BD; ②△ACD是等边三角形; ③AB与平面BCD成60°的角; ④AB与CD所成的角是60°. 其中正确结论的序号是________ 16.函数,若最大值为,最小值为,,则的取值范围是______. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.已知全集,函数的定义域为集合,集合 (1)若求: (2)设;.若是的充分不必要条件,求实数的取值范围. 18.某种放射性元素的原子数随时间的变化规律是,其中是正的常数,为自然对数的底数. (1)判

5、断函数是增函数还是减函数; (2)把表示成原子数的函数. 19.已知函数,在区间上有最大值,最小值,设函数. (1)求的值; (2)不等式在上恒成立,求实数的取值范围; (3)方程有三个不同的实数解,求实数的取值范围. 20.已知函数. (1)根据定义证明:函数在上是增函数; (2)根据定义证明:函数是奇函数. 21.某药物研究所开发了一种新药,根据大数据监测显示,病人按规定的剂量服药后,每毫升血液中含药量y(微克)与时间x(小时)之间的关系满足:前1小时内成正比例递增,1小时后按指数型函数y=max−1(m,a为常数,且0

6、物后,每毫升血液中药物含量随时间变化的曲线. (1)当a=时,求函数y=f(x)的解析式,并求使得y≥1的x的取值范围; (2)研究人员按照M=的值来评估该药的疗效,并测得M≥时此药有疗效.若病人某次服药后测得x=3时每毫升血液中的含药量为y=8,求此次服药有疗效的时长. 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、D 【解析】由对数的运算性质可判断出,而由已知可得,从而可判断出,进而可比较大小 详解】由,故, 因为,所以, 因为,所以,所以,即 故选:D 2、D 【解析】设时间为,

7、依题意有,解指数不等式即可; 【详解】解:设时间为,有,即,解得. 故选:D 3、A 【解析】分析:由条件利用诱导公式、两角和差的余弦公式化简所给的式子,可得结果. 详解: . 故选:A. 点睛:本题主要考查诱导公式、两角和差的余弦公式的应用,属于基础题. 4、D 【解析】逐项判断函数的定义域与对应法则是否相同,即可得出结果. 【详解】对于A, 定义域为,而定义域为,定义域相同,但对应法则不同,故不是同一函数,排除A; 对于B,定义域,而定义域为,所以定义域不同,不是同一函数,排除B; 对于C,  定义域为,而定义域为,所以定义域不同,不是同一函数,排

8、除C; 对于D,与的定义域均为,且,对应法则一致,所以是同一函数,D正确. 故选:D 5、C 【解析】分析:求出点关于平面的对称点,关于原点的对称点,直接利用空间中两点间的距离公式,即可求解结果. 详解:在空间直角坐标系中,点关于平面的对称点, 关于原点的对称点, 则间的距离为,故选C. 点睛:本题主要考查了空间直角坐标系中点的表示,以及空间中两点间的距离的计算,着重考查了推理与计算能力,属于基础题. 6、D 【解析】根据线面的位置关系可判断A;举反例判断B、C;由面面垂直的判定定理可判断D,进而可得正确选项. 详解】对于A:若,,则或,故选项A不正确; 对于B:如图平

9、面为平面,平面为平面,直线为,直线为,满足,,,但与相交,故选项B不正确; 对于C:如图在正方体中,平面为平面,平面为平面,直线为,直线为,满足,,,则,故选项C不正确; 对于D:若,,可得或,若,因为,由面面垂直的判定定理可得;若,可过作平面与相交,则交线在平面内,且交线与平行,由可得交线与垂直,由面面垂直的判定定理可得,故选项D正确; 故选:D. 7、B 【解析】先根据三角函数的定义求出,再利用齐次化将弦化切进行求解. 【详解】为角终边上一点,故,故. 故选:B 8、C 【解析】运用乘1法,可得,再利用基本不等式求最值即可. 【详解】由三角函数的性质知

10、 当且仅当,即,即,时,等号成立. 故选:C 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正”就是各项必须为正数; (2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值; (3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方. 9、B 【解析】利用幂函数图象过点可以求出函数解析式,然后求出即可 【详解】设幂函数的表达式为,则,解得, 所以,则. 故答案为B. 【点睛】本题考查了幂函数,以及对

11、数的运算,属于基础题 10、A 【解析】利用充分必要条件的定义判断. 【详解】若角的终边在第一或第二象限,则,反过来,若,则的终边可能在第一或第二象限,也有可能在轴正半轴上. 所以“是第一或第二象限角”是“”的充分不必要条件. 故选:A 二、填空题:本大题共6小题,每小题5分,共30分。 11、 【解析】求出a的范围,利用指数函数的性质转化不等式为对数不等式,求解即可 【详解】由loga0得0<a<1.由得a﹣1, ∴≤﹣1=,解得0

12、不等式常值代换即可求解. 【详解】因为,,, 所以, 当且仅当,即时,等号成立, 所以的最小值为3, 故答案为:3 13、 【解析】分别解出集合,,再根据并集的定义计算可得. 【详解】∵∴, ∵,∴, 则, 故答案为: 【点睛】本题考查指数不等式、对数不等式的解法,并集的运算,属于基础题. 14、 【解析】真数大于0求定义域. 【详解】由题意得:,解得:,所以定义域为. 故答案为: 15、①②④ 【解析】①取BD的中点O,连接OA,OC,所以,所以平面OAC,所以AC⊥BD;②设正方形的边长为a,则在直角三角形ACO中,可以求得OC=a, 所以△ACD是等

13、边三角形;③AB与平面BCD成45角;④分别取BC,AC的中点为M,N,连接ME,NE,MN.则MN∥AB,且MN=AB=a,ME∥CD,且ME=CD=a,∴∠EMN是异面直线AB,CD所成的角.在Rt△AEC中,AE=CE=a,AC=a,∴NE=AC=a.∴△MEN是正三角形,∴∠EMN=60°,故④正确 考点:本小题主要考查平面图形向空间图形的折叠问题,考查学生的空间想象能力. 点评:解决此类折叠问题,关键是搞清楚折叠前后的变量和不变的量. 16、 【解析】先化简,然后分析的奇偶性,将的最大值和小值之和转化为和有关的式子,结合对勾函数的单调性求解出的取值范围. 【详解】, 令,

14、定义域为关于原点对称, ∴, ∴为奇函数,∴, ∴, ,由对勾函数的单调性可知在上单调递减,在上单调递增, ∴,,, ∴, ∴, 故答案为:. 【点睛】关键点点睛:解答本题的关键在于函数奇偶性的判断,同时需要注意到奇函数在定义域上如果有最值,那么最大值和最小值一定是互为相反数. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(1);(2)或. 【解析】(1)分别求解集合,再求补集和交集即可; (2)由,根据条件得是的真子集,进而得或. 【详解】(1)由得,解得,所以, 当时,, 所以. (2), 因为是的充分不必

15、要条件,所以是的真子集, 所以或, 解得或 18、 (1)减函数;(2)(其中). 【解析】(1)即得是关于的减函数; (2)利用指数式与对数式的互化,可以把t表示为原子数N的函数 试题解析: (1)由已知可得 因为是正常数,,所以,即, 又是正常数,所以是关于的减函数 (2)因为,所以,所以,即(其中). 点睛:本题利用指数函数的单调性即可容易得出函数的单调性,利用指数与对数的互化可得出函数的表达式. 19、(1);(2);(3) 【解析】(1)利用二次函数闭区间上的最值,通过a与0的大小讨论,列出方程,即可求a,b的值; (2)转化不等式f(2x)﹣k•2x≥0

16、为k在一侧,另一侧利用换元法通过二次函数在x∈[﹣1,1]上恒成立,求出最值,即可求实数k的取值范围; (3)化简方程f(|2x﹣1|)+k(3)=0,转化为两个函数的图象的交点的个数,利用方程有三个不同的实数解,推出不等式然后求实数k的取值范围 【详解】解:(1)g(x)=a(x﹣1)2+1+b﹣a, ∵a>0,∴g(x)在[2,3]上为增函数, 故,可得 ,⇔ ∴a=1,b=0 (2)方程f(2x)﹣k•2x≥0化为2x2≥k•2x, k≤1 令t,k≤t2﹣2t+1, ∵x∈[﹣1,1],∴t,记φ(t)=t2﹣2t+1, ∴φ(t)min=φ(1)=0, ∴k

17、≤0 (3)由f(|2x﹣1|)+k(3)=0 得|2x﹣1|(2+3k)=0, |2x﹣1|2﹣(2+3k)|2x﹣1|+(1+2k)=0,|2x﹣1|≠0, 令|2x﹣1|=t,则方程化为t2﹣(2+3k)t+(1+2k)=0(t≠0), ∵方程|2x﹣1|(2+3k)=0有三个不同的实数解, ∴由t=|2x﹣1|的图象(如图)知, t2﹣(2+3k)t+(1+2k)=0有两个根t1、t2,且0<t1<1<t2或0<t1<1,t2=1, 记φ(t)=t2﹣(2+3k)t+(1+2k), 则或  ∴k>0 【点睛】本题考查函数恒成立,二次函数闭区间上的最值的求法,考

18、查转化思想与数形结合的思想 20、⑴见解析;⑵见解析. 【解析】(1)利用单调性定义证明函数的单调性;(2)利用奇偶性定义证明函数奇偶性. 试题解析: ⑴设任意的,且, 则 ,,即, 又, ,即, 在上是增函数 ⑵, , ,即 所以函数是奇函数. 点睛:证明函数单调性的一般步骤:(1)取值:在定义域上任取,并且(或);(2)作差:,并将此式变形(要注意变形到能判断整个式子符号为止);(3)定号:判断的正负(要注意说理的充分性),必要时要讨论;(4)下结论:根据定义得出其单调性 21、(1), (2)小时 【解析】(1)根据图像求出解析式;令直接解出的取值范围; (2)先求出,得到,根据单调性计算出解集即可. 【小问1详解】 当时,与成正比例,设为,则; 所以,当时,故 当时,令解得:, 当时,令得:, 综上所述,使得的的取值范围为: 【小问2详解】 当时,,解得 所以,则 令,解得, 由单调性可知的解集为,所以此次服药产生疗效的时长为小时

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服