ImageVerifierCode 换一换
格式:DOC , 页数:14 ,大小:697KB ,
资源ID:12790525      下载积分:12.58 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/12790525.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(云南省玉溪市峨山彝族自治县一中2025-2026学年数学高一上期末复习检测模拟试题含解析.doc)为本站上传会员【zj****8】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

云南省玉溪市峨山彝族自治县一中2025-2026学年数学高一上期末复习检测模拟试题含解析.doc

1、云南省玉溪市峨山彝族自治县一中2025-2026学年数学高一上期末复习检测模拟试题 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.如图,正方体的棱长为1,线段 上有两个动点E、F,且 ,则下列结论中错误的是 A. B.

2、 C.三棱锥体积为定值 D. 2.某同学用二分法求方程的近似解,该同学已经知道该方程的一个零点在之间,他用二分法操作了7次得到了方程的近似解,那么该近似解的精确度应该为 A.0.1 B.0.01 C.0.001 D.0.0001 3.已知集合,.则() A. B. C. D. 4.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片的数字之积为偶数的概率为( ) A. B. C. D. 5.命题“”的否定是:() A. B. C. D. 6.已知函数(,且)的图象恒过点P,若角的终边经过点P,则( ) A. B. C.

3、 D. 7.若向量=,||=2,若·(-)=2,则向量与的夹角() A. B. C. D. 8.已知a>0,则当取得最小值时,a值为() A. B. C. D.3 9.已知O是所在平面内的一定点,动点P满足,则动点P的轨迹一定通过的( ) A.内心 B.外心 C.重心 D.垂心 10.已知函数满足∶当时,, 当时,, 若,且,设,则( ) A.没有最小值 B.的最小值为 C.的最小值为 D.的最小值为 二、填空题:本大题共6小题,每小题5分,共30分。 11.已知函数,则______,若,则______. 12.已知是定义在上的奇函数,且为偶函数,对于

4、函数有下列几种描述: ①是周期函数; ②是它的一条对称轴; ③是它图象的一个对称中心; ④当时,它一定取最大值; 其中描述正确的是__________ 13.已知集合 (1)当时,求的非空真子集的个数; (2)当时,若,求实数的取值范围 14.定义在上的函数满足则________. 15.的值是__________ 16.为了解某校高三学生身体状况,用分层抽样的方法抽取部分男生和女生的体重,将男生体重数据整理后,画出了频率分布直方图,已知图中从左到右前三个小组频率之比为1:2:3,第二小组频数为12,若全校男、女生比例为3:2,则全校抽

5、取学生数为________ 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.已知函数,为偶函数 (1)求k的值. (2)若函数,是否存在实数m使得的最小值为0,若存在,求出m的值;若不存在,请说明理由 18.已知集合. (1)当时.求; (2)若是的充分条件,求实数的取值范围. 19.已知,且, (1)求,的值; (2),求的值 20.已知平面直角坐标系内两点A(4,0),B(0,3). (1)求直线AB方程; (2)若直线l平行于直线AB,且到直线AB的距离为2,求直线l的方程. 21.如图,四边形中,,,,,、分别在、

6、上,,现将四边形沿折起,使平面平面 ()若,是否存在折叠后的线段上存在一点,且,使得平面?若存在,求出的值;若不存在,说明理由 ()求三棱锥的体积的最大值,并求此时点到平面的距离 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、D 【解析】可证,故A正确;由∥平面ABCD,可知,B也正确;连结BD交AC于O,则AO为三棱锥的高,,三棱锥的体积为为定值,C正确;D错误.选D 2、B 【解析】令,则用计算器作出的对应值表:

7、 由表格数据知,用二分法操作次可将作为得到方程的近似解,,,近似解的精确度应该为0.01,故选B. 3、C 【解析】直接利用交集的运算法则即可. 【详解】∵,, ∴. 故选:. 4、D 【解析】从4张卡片上分别写有数字1,2,3,4中随机抽取2张的基本事件有: 12,13,14,23,24,34,一共6种, 其中数字之积为偶数的有:12,14,23,24,34一共有5种, 所以取出的2张卡片的数字之积为偶数的概率为, 故选:D 5、A 【解析】由特称命题的否定是全称命题,可得出答案. 【详解】根据特称命题的否定是全称命题,可知命题“”的否定是“”. 故选:A.

8、6、A 【解析】由题可得点,再利用三角函数的定义即求. 【详解】令,则, 所以函数(,且)的图象恒过点, 又角的终边经过点, 所以, 故选:A. 7、A 【解析】利用向量模的坐标求法可得,再利用向量数量积求夹角即可求解. 【详解】由已知可得:,得, 设向量与的夹角为,则 所以向量与的夹角为 故选:A. 【点睛】本题考查了利用向量数量积求夹角、向量模的坐标求法,属于基础题. 8、C 【解析】利用基本不等式求最值即可. 【详解】∵a>0, ∴, 当且仅当,即时,等号成立, 故选:C 9、A 【解析】表示的是方向上的单位向量,画图象,根据图象可知点在的角平分

9、线上,故动点必过三角形的内心. 【详解】如图,设,, 已知均为单位向量, 故四边形为菱形,所以平分, 由 得,又与有公共点, 故三点共线, 所以点在的角平分线上,故动点的轨迹经过的内心. 故选:A. 10、B 【解析】根据已知条件,首先利用表示出,然后根据已知条件求出的取值范围,最后利用一元二次函数并结合的取值范围即可求解. 【详解】∵且, 则,且,∴ , 即 由, ∴, 又∵, ∴当时,, 当时,, 故有最小值. 故选:B. 二、填空题:本大题共6小题,每小题5分,共30分。 11、 ①.15 ②.-3或 【解析】根据分段函数直接

10、由内到外计算即可求,当时,分段讨论即可求解. 【详解】, , 时, 若,则,解得或(舍去), 若,则,解得, 综上,或, 故答案为:15;-3或 【点睛】本题主要考查了分段函数的解析式,已知自变量求函数值,已知函数值求自变量,属于容易题. 12、①③ 【解析】先对已知是定义在的奇函数,且为偶函数用定义转化为恒等式,再由两个恒等式进行合理变形得出与四个命题有关的结论,通过推理证得①③正确. 【详解】因为为偶函数,所以, 即是它的一条对称轴; 又因为是定义在上的奇函数, 所以,即, 则,, 即是周期函数,即①正确; 因为是它的一条对称轴且, 所以()是它的对称轴

11、即②错误; 因为函数是奇函数且是以为周期周期函数, 所以,所以是它图象的一个对称中心, 即③正确; 因为是它的一条对称轴,所以当时,函数取得最大值或最小值, 即④不正确. 故答案为:①③. 13、(1)30(2)或 【解析】(1)当时,可得中元素的个数,进而可得的非空真子集的个数; (2)根据,可分和两种情况讨论,可得出实数的取值范围 【小问1详解】 当时,,共有5个元素, 所以的非空真子集的个数为 【小问2详解】 (1)当时,,解得; (2)当时,根据题意作出如图所示的数轴, 可得或 解得:或 综上可得,实数的取值范围是或 14、 【解析】表示周

12、期为3的函数,故,故可以得出结果 【详解】解: 表示周期为3的函数, 【点睛】本题考查了函数的周期性,解题的关键是要能根据函数周期性的定义得出函数的周期,从而进行解题 15、 【解析】分析:利用对数运算的性质和运算法则,即可求解结果. 详解:由 . 点睛:本题主要考查了对数的运算,其中熟记对数的运算法则和对数的运算性质是解答的关键,着重考查了推理与运算能力. 16、80 【解析】频率分布直方图中,先根据小矩形的面积等于这一组的频率求出四与第五组的频率和,再根据条件求出前三组的频数,再依据频率的和等于1,求出前三组的频率,从而求出抽取的男生数,最后按比例求出全校抽取学生数

13、即可 【详解】根据图可知第四与第五组的频率和为(0.0125+0.0375)×5=0.25 ∵从左到右前三个小组频率之比1:2:3,第二小组频数为12 ∴前三个小组的频数为36,从而男生有人 ∵全校男、女生比例为3:2, ∴全校抽取学生数为48× =80 故答案为80 【点睛】本题考查频数,频率及频率分布直方图,考查运用统计知识解决简单实际问题的能力,数据处理能力和运用意识 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(1) (2)存在使得的最小值为0 【解析】(1)利用偶函数的定义可得,化简可得对一切恒成立,进而求得的值;

14、 (2)由(1)知,,令,则,再分、、进行讨论即可得解 【小问1详解】 解:由函数是偶函数可知,,即, 所以,即对一切恒成立, 所以; 【小问2详解】 解:由(1)知,,,令,则, ①当时,在上单调递增,故,不合题意; ②当时,图象对称轴为,则在上单调递增,故,不合题意; ③当时,图象对称轴为, 当,即时,,令,解得,符合题意; 当,即时,,令,解得(舍; 综上,存在使得的最小值为0 18、(1)或. (2) 【解析】(1)解一元二次不等式求集合A、B,再由集合的补、并运算求即可. (2)由充分条件知,则有,进而求的取值范围. 【小问1详解】 , 当

15、时,,或, ∴或; 【小问2详解】 由是的充分条件,知:, ∴,解得, ∴的取值范围为. 19、(1); (2) 【解析】(1)首先可通过二倍角公式以及将转化为,然后带入即可计算出的值,再然后通过以及即可计算出的值; (2)可将转化为然后利用两角差的正弦公式即可得出结果 【详解】⑴, 因为,, 所以; ⑵因为,,, 所以, 【点睛】本题考查三角函数的相关性质,主要考查三角恒等变换,考查的公式有、、,在使用计算的时候一定要注意角的取值范围 20、(1) (2)或 【解析】(1)由直线方程的两点式可求解; (2)根据直线的平行关系及平行直线之间的距离公式

16、可求解. 【小问1详解】 ∵A(4,0),B(0,3) 由两点式可得直线AB的方程为,即. 【小问2详解】 由(1)可设直线l:, ∴,解得或. ∴直线l的方程为或. 21、 (1)答案见解析;(2)答案见解析. 【解析】(1)存在,使得平面,此时,即,利用几何关系可知四边形为平行四边形,则,利用线面平行的判断定理可知平面成立 (2)由题意可得三棱锥的体积,由均值不等式的结论可知时,三棱锥的体积有最大值,最大值为 建立空间直角坐标系,则,平面的法向量为,故点到平面的距离 试题解析: ()存在,使得平面,此时 证明:当,此时, 过作,与交,则, 又,故, ∵,, ∴,且,故四边形为平行四边形, ∴, ∵平面,平面, ∴平面成立 ()∵平面平面,平面,, ∴平面, ∵, ∴,,, 故三棱锥的体积, ∴时,三棱锥的体积有最大值,最大值为 建立如图所示的空间直角坐标系,则,,, ,, 设平面的法向量为,则, ∴,取,则,, ∴ ∴点到平面的距离

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服