ImageVerifierCode 换一换
格式:DOC , 页数:14 ,大小:619.50KB ,
资源ID:12790494      下载积分:12.58 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/12790494.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(2026届黑龙江省穆棱市数学高一第一学期期末学业质量监测试题含解析.doc)为本站上传会员【zh****1】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2026届黑龙江省穆棱市数学高一第一学期期末学业质量监测试题含解析.doc

1、2026届黑龙江省穆棱市数学高一第一学期期末学业质量监测试题 考生须知: 1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。 2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。 3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.设命题:,则的否定为() A. B. C. D. 2.的值等于 A. B. C. D. 3.直线

2、的倾斜角为() A. B.30° C.60° D.120° 4.函数部分图象如图所示,则下列结论错误的是() A.频率为 B.周期为 C.振幅为2 D.初相为 5.一个正三棱柱的三视图如图所示,则这个三棱柱的表面积为() A. B. C. D. 6.下列命题正确的是 A.若两条直线和同一个平面所成的角相等,则这两条直线平行 B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行 C.若一条直线平行于两个相交平面,则这条直线与这两个平面交线平行 D.若两个平面都垂直于第三个平面,则这两个平面平行 7.已知集合,,,则( ) A. B. C.

3、 D. 8.在中,,,若点满足,则() A. B. C. D. 9.函数,x∈R在( ) A.上是增函数 B.上是减函数 C.上是减函数 D.上是减函数 10.已知函数,是函数的一个零点,且是其图象的一条对称轴.若是的一个单调区间,则的最大值为 A.18 B.17 C.15 D.13 二、填空题:本大题共6小题,每小题5分,共30分。 11.定义在上的函数满足则________. 12.若函数在上单调递增,则a的取值范围为______ 13.已知,且,则=_______________. 14.已知,,若与的夹角是锐角,则的取值范围为______ 15.

4、若关于的方程只有一个实根,则实数的取值范围是______. 16.A是锐二面角α-l-β的α内一点,AB⊥β于点B,AB=,A到l的距离为2,则二面角α-l-β的平面角大小为________. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.某镇发展绿色经济,因地制宜将该乡镇打造成“特色农产品小镇”,根据研究发现:生产某农产品,固定投入万元,最大产量万斤,每生产万斤,需其他投入万元,,根据市场调查,该农产品售价每万斤万元,且所有产量都能全部售出.(利润收入成本) (1)写出年利润(万元)与产量(万斤)的函数解析式; (2)求年产量为多少万斤时,

5、该镇所获利润最大?求出利润最大值. 18.求满足下列条件的直线方程:(要求把直线的方程化为一般式) (1)经过点,且斜率等于直线的斜率的倍; (2)经过点,且在x轴上截距等于在y轴上截距的2倍 19.如图,在四边形中,,,,为等边三角形,是的中点.设,. (1)用,表示,, (2)求与夹角的余弦值. 20.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=2x-1. (1)求f(3)+f(-1); (2)求f(x)的解析式. 21.抛掷两颗骰子,计算: (1)事件“两颗骰子点数相同”的概率; (2)事件“点数之和小于7”概率; (3)事件“点数之和等

6、于或大于11”的概率. 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、B 【解析】本题根据题意直接写出命题的否定即可. 【详解】解:因为命题:, 所以的否定:, 故选:B 【点睛】本题考查含有一个量词的命题的否定,是基础题. 2、C 【解析】因为,所以可以运用两角差的正弦公式、余弦公式,求出的值. 【详解】, , ,故本题选C. 【点睛】本题考查了两角差的正弦公式、余弦公式、以及特殊角的三角函数值.其时本题还可以这样解: , . 3、C 【解析】根据直线的斜率即可得倾斜角. 【详

7、解】因为直线的斜率为, 所以直线的倾斜角为满足,即 故选:C. 4、A 【解析】根据图象可得、,然后利用求出即可. 【详解】由图可知,C正确; ,则,,B正确;,A错误; 因为,则,即, 又,则,D正确 故选:A 5、D 【解析】由三视图可知,该正三棱柱的底面是边长为2cm的正三角形,高为2cm,根据面积公式计算可得结果. 【详解】正三棱柱如图, 有,, 三棱柱的表面积为. 故选:D 【点睛】本题考查了根据三视图求表面积,考查了正三棱柱结构特征,属于基础题. 6、C 【解析】若两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也可能相交

8、所以A错;一个平面不在同一条直线的三点到另一个平面的距离相等,则这两个平面平行,故B错;若两个平面垂直同一个平面两平面可以平行,也可以垂直;故D错;故选项C正确. [点评]本题旨在考查立体几何的线、面位置关系及线面的判定和性质,需要熟练掌握课本基础知识的定义、定理及公式. 7、C 【解析】解一元二次不等式求出集合,解不等式求出集合,再进行交集运算即可求解. 【详解】因为, , 所以, 故选:C. 8、C 【解析】由题可得,进一步化简可得. 【详解】,, . 故选:C. 9、B 【解析】化简,根据余弦函数知识确定正确选项. 【详解】, 所以在上递增,在上递减.B

9、正确,ACD选项错误. 故选:B 10、D 【解析】由已知可得,结合,得到(),再由是的一个单调区间,可得T,即,进一步得到,然后对逐一取值,分类求解得答案 【详解】由题意,得,∴, 又,∴() ∵是一个单调区间,∴T,即, ∵,∴,即 ①当,即时,,,∴,, ∵,∴,此时在上不单调, ∴不符合题意; ②当,即时,,,∴,, ∵,∴,此时在上不单调, ∴不符合题意; ③当,即时,,,∴, ∵,∴,此时在上单调递增, ∴符合题意,故选D 【点睛】本题主要考查正弦型函数的单调性,对周期的影响,零点与对称轴之间的距离与周期的关系,考查分类讨论的数学思想方法,考查逻辑

10、思维能力与推理运算能力,结合选项逐步对系数进行讨论是解决该题的关键,属于中档题. 二、填空题:本大题共6小题,每小题5分,共30分。 11、 【解析】表示周期为3的函数,故,故可以得出结果 【详解】解: 表示周期为3的函数, 【点睛】本题考查了函数的周期性,解题的关键是要能根据函数周期性的定义得出函数的周期,从而进行解题 12、 【解析】根据函数的单调性得到,计算得到答案. 【详解】函数在上单调递增,则 故答案为: 【点睛】本题考查了函数的单调性,意在考查学生的计算能力. 13、 【解析】由同角三角函数关系求出,最后利用求解即可. 【详解】由,且得 则,

11、 则. 故答案为:. 14、 【解析】利用坐标表示出和,根据夹角为锐角可得且与不共线,从而构造出不等式解得结果. 【详解】由题意得:, 解得: 又与不共线,解得: 本题正确结果: 【点睛】本题考查根据向量夹角求解参数范围问题,易错点是忽略两向量共线的情况. 15、 【解析】把关于的方程只有一个实根,转化为曲线与直线的图象有且只有一个交点,在同一坐标系内作出曲线与直线的图象,结合图象,即可求解. 【详解】由题意,关于方程只有一个实根, 转化为曲线与直线的图象有且只有一个交点, 在同一坐标系内作出曲线与直线的图象,如图所示, 结合图象可知,当直线介于和之间的直

12、线或与重合的直线符合题意, 又由直线在轴上的截距分别为, 所以实数的取值范围是. 故答案为. 【点睛】本题主要考查了直线与圆的位置关系的应用,其中解答中把方程的解转化为直线与曲线的图象的交点个数,结合图象求解是解答的关键,着重考查了转化思想,以及数形结合思想的应用,属于基础题. 16、 【解析】如图,过点B作与,连,则有平面,从而得,所以即为二面角的平面角 在中,, 所以, 所以锐角 即二面角的平面角的大小为 答案: 点睛:作二面角的平面角可以通过垂线法进行,在一个半平面内找一点作另一个半平面的垂线,再过垂足作二面角的棱的垂线,两条垂线确定的平面和二面角的棱垂直

13、由此可得二面角的平面角,然后通过解三角形的方法求得角,解题时要注意所求角的范围 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(1); (2)当年产量为万斤时,该镇所获利润最大,最大利润为万元 【解析】(1)根据利润收入成本可得函数解析式; (2)分别在和两种情况下,利用二次函数和对勾函数最值的求法可得结果. 【小问1详解】 由题意得:; 【小问2详解】 当时,, 则当时,; 当时,(当且仅当,即时取等号),; ,当,即年产量为万斤时,该镇所获利润最大,最大利润为万元. 18、(1);(2)或 【解析】(1)由题意可得

14、的斜率为,即可得所求直线的斜率,代入点斜式方程,即可得直线的方程,化简整理,即可得答案. (2)当直线不过原点时,设直线在y轴截距为a,根据直线方程的截距式,代入点坐标,即可得直线方程;直线过原点时,设直线方程为,代入点坐标,即可得直线方程,综合即可得答案. 【详解】(1)因为直线的斜率为, 所以所求直线的斜率为, 所以所求直线方程为, 化简得 (2)由题意,当直线不过原点时,设直线在y轴截距为a,则所求直线方程为, 将代入,可得,解得, 所以直线方程为; 当直线过原点时,设直线方程为, 将代入,可得,解得, 所以直线方程为,即, 综上可得,所求直线方程为或 19、(

15、1),;(2). 【解析】(1)利用向量的线性运算即平面向量基本定理确定,与,的关系; (2)解法一:利用向量数量积运算公式求得向量夹角余弦值;解法二:建立平面直角坐标系,利用数量积的坐标表示确定向量夹角余弦值. 【详解】解法一: (1)由图可知. 因为E是CD的中点,所以. (2)因为,为等边三角形,所以,, 所以, 所以, . 设与的夹角为,则, 所以在与夹角的余弦值为. 解法二:(1)同解法一. (2)以A为原点,AD所在直线为x轴,过A且与AD垂直的直线为y轴建立平面直角坐标系, 则,,,. 因为E是CD的中点,所以, 所以,, 所以, . 设与的

16、夹角为,则, 所以与夹角的余弦值为. 【点睛】求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用 20、 (1) 6(2)f(x)= 【解析】(1)可以直接求,利用为奇函数,求得,所以只需要求出就可以了,再求出;(2)由于已知的解析式,所以只需要求出时的解析式即可,由奇函数的性质求出解析式 试题解析:(1)∵f(x)是奇函数, ∴f(3)+f(-1)=f(3)-f(1)=23-1-2+1=6. (2)设x<0,则-x>0, ∴f(-x)=2-x-1, ∵f(x)为奇函数, ∴f

17、x)=-f(-x)=-2-x+1, ∴f(x)= 21、(1);(2);(3) 【解析】(1)根据所有的基本事件的个数为,而所得点数相同的情况有种,从而求得事件“两颗骰子点数相同”的概率;(2)根据所有的基本事件的个数,求所求的“点数之和小于”的基本事件的个数,最后利用概率计算公式求解即可;(3)根据所有的基本事件的个数,求所求的“点数之和等于或大于”的基本事件的个数,最后利用概率计算公式求解即可 试题解析:抛掷两颗骰子,总的事件有个. (1)记“两颗骰子点数相同”为事件,则事件有6个基本事件, ∴ (2)记“点数之和小于7”事件,则事件有15个基本事件, ∴ (3)记“点数之和等于或大于11”为事件,则事件有3个基本事件, ∴. 考点:古典概型.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服