ImageVerifierCode 换一换
格式:DOC , 页数:13 ,大小:661KB ,
资源ID:12790489      下载积分:12.58 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/12790489.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(福建省泉州市永春县第一中学2025-2026学年数学高一第一学期期末质量跟踪监视试题含解析.doc)为本站上传会员【zh****1】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

福建省泉州市永春县第一中学2025-2026学年数学高一第一学期期末质量跟踪监视试题含解析.doc

1、福建省泉州市永春县第一中学2025-2026学年数学高一第一学期期末质量跟踪监视试题 考生须知: 1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。 2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。 3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.已知函数的定义域为,则函数的定义域为(  ) A. B. C. D. 2.已知

2、命题:角为第二或第三象限角,命题:,命题是命题的() A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 3.已知函数,则该函数的单调递减区间是() A. B. C. D. 4.函数的最小值为() A.1 B. C. D. 5.已知函数,若关于x的方程恰有两个不同的实数解,则实数m的取值范围是() A. B. C. D. 6.已知,,且,则 A.2 B.1 C.0 D.-1 7.在三角形中,若点满足,则与的面积之比为( ) A. B. C. D. 8.已知正实数满足,则的最小值是() A B. C. D. 9.若函数

3、在区间内存在零点,则实数的取值范围是() A. B. C. D. 10.函数的图像与函数的图像所有交点的横坐标之和等于 A2 B.4 C.6 D.8 二、填空题:本大题共6小题,每小题5分,共30分。 11.已知,,则___________. 12.设函数,则__________ 13.现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7, 8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了 20组随机数: 7527 0293 7140 98

4、57 0347 4373 8636 6947 1417 4698 0371 6233 2616 8045 6011 3661 9597 7424 7610 4281 根据以上数据估计该射击运动员射击4次至少击中3次的概率为__________ 14.各条棱长均相等的四面体相邻两个面所成角的余弦值为___________. 15.函数的定义域是_____________ 16.给定函数y=f(x),设集合A={x|y=f(x)},B={y|y=f(x)}.若对于∀x∈A,∃y∈B,使得x+y=0成立,则称函数f(x)具有性质P.给出下列三个函数:①;②;

5、③y=lgx.其中,具有性质P的函数的序号是_____ 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.已知函数. (1)求函数的最小正周期; (2)求函数在区间上的最小值和最大值. 18.已知函数f (x)=(a,b为常数,且a≠0)满足f (2)=1,方程f (x)=x有唯一解, (1)求函数f(x)的解析式; (2)若,求函数的最大值. 19.已知,,,. (1)求的值; (2)求的值: (3)求的值. 20.设两个向量,,满足,. (1)若,求、的夹角; (2)若、夹角为,向量与的夹角为钝角,求实数的取值范围. 21

6、.若是从四个数中任取的一个数,是从三个数中任取的一个数 (1)求事件“”的概率; (2)求事件“方程有实数根”的概率 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、C 【解析】解不等式即得函数的定义域. 【详解】由题得,解之得,所以函数的定义域为. 故答案为C 【点睛】本题主要考查复合函数的定义域的求法,考查具体函数的定义域的求法和对数函数的单调性,意在考查学生对这些知识的掌握水平和分析推理能力. 2、D 【解析】利用切化弦判断充分性,根据第四象限的角判断必要性. 【详解】当角为第二象限角时,

7、 所以, 当角为第三象限角时,, 所以, 所以命题是命题的不充分条件. 当时,显然,当角可以为第四象限角,命题是命题的不必要条件. 所以命题是命题的既不充分也不必要条件. 故选:D 3、C 【解析】先用诱导公式化简,再求单调递减区间. 【详解】 要求单调递减区间, 只需,. 故选:C. 【点睛】(1)三角函数问题通常需要把它化为“一角一名一次”的结构,借助于或的性质解题; (2)求单调区间,最后的结论务必写成区间形式,不能写成集合或不等式 4、D 【解析】根据对数的运算法则,化简可得,分析即可得答案. 【详解】由题意得, 当时,的最小值为. 故选:D

8、 5、D 【解析】根据题意,函数与图像有两个交点,进而作出函数图像,数形结合求解即可. 【详解】解:因为关于x的方程恰有两个不同的实数解, 所以函数与图像有两个交点, 作出函数图像,如图, 所以时,函数与图像有两个交点, 所以实数m的取值范围是 故选:D 6、D 【解析】∵, ∴ ∵ ∴ ∴ 故选D 7、B 【解析】由题目条件所给的向量等式,结合向量的线性运算推断P、Q两点所在位置,比较两个三角形的面积关系 【详解】因为,所以,即,得点P为线段BC上靠近C点的三等分点,又因为,所以,即,得点Q为线段BC上靠近B点的四等分点,所以,所以与的面积之比为,选择B

9、 【点睛】平面向量的线性运算要注意判断向量是同起点还是收尾相连的关系再使用三角形法则和平行四边形法则进行加减运算,借助向量的数乘运算可以判断向量共线,及向量模长的关系 8、B 【解析】根据题中条件,得到,展开后根据基本不等式,即可得出结果. 【详解】因为正实数满足, 所以, 当且仅当,即时,等号成立. 故选:B. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数; (2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值; (3)“三相等

10、是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方. 9、B 【解析】利用零点存在性定理知,代入解不等式即可得解. 【详解】函数在区间内存在零点,且函数在定义域内单调递增, 由零点存在性定理知,即,解得 所以实数的取值范围是 故选:B 10、D 【解析】由于函数与函数 均关于点成中心对称,结合图形以点 为中心两函数共有个交点,则有 ,同理有,所以所有交点横坐标之和为 .故正确答案为D. 考点:1.函数的对称性;2.数形结合法的应用. 二、填空题:本大题共6小题,每小题5分,共30分。 11、 【

11、解析】根据余弦值及角的范围,应用同角的平方关系求. 【详解】由,,则. 故答案为:. 12、 【解析】先根据2的范围确定表达式,求出;后再根据的范围确定表达式,求出. 【详解】因为,所以,所以. 【点睛】分段函数求值问题,要先根据自变量的范围,确定表达式,然后代入求值.要注意由内而外求值,属于基础题. 13、 【解析】根据数据统计击中目标的次数,再用古典概型概率公式求解. 【详解】由数据得射击4次至少击中3次的次数有15, 所以射击4次至少击中3次的概率为. 故答案为: 【点睛】本题考查古典概型概率公式,考查基本分析求解能力,属基础题. 14、 【解析】首先利用图像

12、作出相邻两个面所成角,然后利用已知条件求出正四面体相邻两个面所成角的两边即可求解. 【详解】由题意,四面体为正三棱锥,不妨设正三棱锥的边长为,过作平面,垂足为,取的中点,并连接、、、,如下图: 由正四面体的性质可知,为底面正三角形的中心, 从而,, ∵为的中点,为正三角形, 所以,,所以为正四面体相邻两个面所成角 ∵, ∴易得,, ∵平面,平面, ∴, 故. 故答案为:. 15、. 【解析】由题意,要使函数有意义,则,解得:且.即函数定义域为. 考点:函数的定义域. 16、①③ 【解析】A即为函数的定义域,B即为函数的值域,求出每个函数的定义域及值域,直接判

13、断即可 【详解】对①,A= (﹣∞,0)∪ (0,+∞),B= (﹣∞,0)∪ (0,+∞),显然对于∀x∈A,∃y∈B,使得x+y=0成立,即具有性质P; 对②,A=R,B= (0,+∞),当x>0时,不存在y∈B,使得x+y=0成立,即不具有性质P; 对③,A= (0,+∞),B=R,显然对于∀x∈A,∃y∈B,使得x+y=0成立,即具有性质P; 故答案为:①③ 【点睛】本题以新定义为载体,旨在考查函数的定义域及值域,属于基础题 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(1);(2)最大值为,最小值为.. 【解析】(1)根

14、据最小正周期的计算公式求解出的最小正周期; (2)先求解出的取值范围,然后根据正弦函数的单调性求解出在区间上的最值. 【详解】(1)因为,所以; (2)因为,所以, 当时,,此时, 当时,,此时, 故在区间上的最大值为,最小值为. 18、(1)f(x)=;(2). 【解析】(1)由可得,由此方程的解唯一,可得 ,可求出,再由f (2)=1,可求出的值,进而可求出函数f(x)的解析式; (2)由题意可得,然后求出 的最小值,可得的最大值 【详解】解:(1)由,得,即 . 因为方程有唯一解, 所以,即, 因为f (2)=1,所以=1, 所以, 所以= ; (2)因

15、为,所以, 而, 当,即时, 取得最小值 , 此时取得最大值. 19、(1); (2); (3). 【解析】(1)同角三角函数平方关系求得,,再由及差角余弦公式求值即可. (2)由诱导公式、二倍角余弦公式可得,即可求值. (3)由(1)及和角正余弦公式求、,由(2)及平方关系求,最后应用差角余弦公式求,结合角的范围求. 【小问1详解】 由题设,,, ∴,, 又. 【小问2详解】 . 【小问3详解】 由,则, 由,则, ∴,,又,,则, ∴,而,故. 20、(1);(2)且. 【解析】(1)根据数量积运算以及结果,结合模长,即可求得,再根据数量积求得

16、夹角; (2)根据夹角为钝角则数量积为负数,求得的范围;再排除向量与不为反向向量对应参数的范围,则问题得解. 【详解】(1)因为,所以, 即,又,,所以, 所以,又, 所以向量、的夹角是. (2)因为向量与的夹角为钝角,所以, 且向量与不反向共线, 即, 又、夹角为,所以, 所以,解得, 又向量与不反向共线, 所以,解得, 所以的取值范围是且. 【点睛】本题考查利用数量积求向量夹角,以及由夹角范围求参数范围,属综合基础题. 21、(1) (2) 【解析】(1)利用列举法求解,先列出取两数的所有情况,再找出满足的情况,然后根据古典概型的概率公式求解即可, (2)由题意可得,再根据对立事件的概率公式求解 【小问1详解】 设事件表示“” 因为是从四个数中任取的一个数,是从三个数中任取的一个数 所以样本点一共有12个:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),其中第一个数表示的取值,第二个数表示的取值 符合古典概型模型,事件包含其中3个样本点, 故事件发生的概率为 【小问2详解】 若方程有实数根,则需,即 记事件“方程有实数根”为事件,由(1)知, 故

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服