ImageVerifierCode 换一换
格式:DOC , 页数:16 ,大小:704.50KB ,
资源ID:12790307      下载积分:12.58 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/12790307.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(2025年河南天一大联考数学高一上期末学业质量监测试题含解析.doc)为本站上传会员【cg****1】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2025年河南天一大联考数学高一上期末学业质量监测试题含解析.doc

1、2025年河南天一大联考数学高一上期末学业质量监测试题 注意事项 1.考生要认真填写考场号和座位序号。 2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。 3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.角的终边落在() A.第一象限 B.第二象限 C.第三象限 D.第四象限 2.已知角的终边上有一点的坐标是,则的值为() A. B. C. D. 3.全集U={1,2

2、3,4,5,6},M={x|x≤4},则M等于( ) A.{1,3} B.{5,6} C.{1,5} D.{4,5} 4.已知函数若函数有四个零点,零点从小到大依次为则的值为(  ) A.2 B. C. D. 5.若,且为第二象限角,则() A. B. C. D. 6.下列选项正确的是( ) A. B. C. D. 7.在R上定义运算⊙:A⊙B=A(1-B),若不等式(x-a)⊙(x+a)<1对任意的实数x∈R恒成立,则实数a的取值范围为() A.-1

3、 ) A.y=sinx B. C. D. 9.设是两条不同的直线,是两个不同的平面,且,则下列说法正确的是 A.若,则 B.若,则 C.若,则 D.若,则 10.若,,,则实数,,的大小关系为 A. B. C. D. 二、填空题:本大题共6小题,每小题5分,共30分。 11.已知,则__________. 12.关于函数f(x)=有如下四个命题: ①f(x)的图象关于y轴对称 ②f(x)的图象关于原点对称 ③f(x)的图象关于直线x=对称 ④f(x)的最小值为2 其中所有真命题的序号是__________ 13.已知函数,若关于的方程在上有个不相等的实数

4、根,则实数的取值范围是___________. 14.已知扇形的圆心角为120°,半径为3,则扇形的面积是________. 15.函数f(x)是定义在R上的偶函数,f(x-1)是奇函数,且当时,,则________ 16.给出下列四个结论: ①函数是奇函数; ②将函数的图象向右平移个单位长度,可以得到函数的图象; ③若是第一象限角且,则; ④已知函数,其中是正整数.若对任意实数都有,则的最小值是4 其中所有正确结论的序号是________ 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.对于两个函数:和,的最大值为M,若存在最小的正

5、整数k,使得恒成立,则称是的“k阶上界函数”. (1)若,是的“k阶上界函数”.求k的值; (2)已知,设,,. (i)求的最小值和最大值; (ii)求证:是的“2阶上界函数”. 18.如图,在四棱锥中,平面,,为棱上一点. (1)设为与的交点, 若, 求证:平面; (2)若, 求证: 19.已知, (1)求的值; (2)求的值 20.已知函数,其中. (1)当时,求的值域和单调区间; (2)若存在单调递增区间,求a的取值范围. 21.我们知道,声音由物体的振动产生,以波的形式在一定的介质(如固体、液体、气体)中进行传播.在物理学中,声波在单位时间内作用在与其传

6、递方向垂直的单位面积上的能量称为声强I().但在实际生活中,常用声音的声强级D(分贝)来度量.为了描述声强级D()与声强I()之间的函数关系,经过多次测定,得到如下数据: 组别 1 2 3 4 5 6 7 声强I() ① 声强级D() 10 13.01 14.77 16.02 20 40 ② 现有以下三种函数模型供选择: (1)试根据第1-5组的数据选出你认为符合实际的函数模型,简单叙述理由,并根据第1组和第5组数据求出相应的解析式; (2)根据(1)中所求解析式,结合表中已知数据,求出表格中①、②数据的值; (3)已知烟花的

7、噪声分贝一般在,其声强为;鞭炮的噪声分贝一般在,其声强为;飞机起飞时发动机的噪声分贝一般在,其声强为,试判断与的大小关系,并说明理由 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、A 【解析】由于,所以由终边相同的定义可得结论 【详解】因为, 所以角的终边与角的终边相同, 所以角的终边落在第一象限角 故选:A 2、D 【解析】求出,由三角函数定义求得,再由诱导公式得结论 【详解】依题有,∴,∴. 故选:D 3、B 【解析】M即集合U中满足大于4的元素组成的集合. 【详解】由全集U={1,

8、2,3,4,5,6},M={x|x≤4} 则M = {5,6}. 故选:B 【点睛】本题考查求集合的补集,属于基础题. 4、C 【解析】函数有四个零点,即与图象有4个不同交点, 可设四个交点横坐标满足,由图象,结合对数函数的性质,进一步求得,利用对称性得到,从而可得结果. 【详解】 作出函数的图象如图, 函数有四个零点,即与的图象有4个不同交点, 不妨设四个交点横坐标满足, 则,,, 可得, 由,得, 则,可得, 即,,故选C. 【点睛】函数的性质问题以及函数零点问题是高考的高频考点,考生需要对初高中阶段学习的十几种初等函数的单调性、奇偶性、周期性以及对称性非

9、常熟悉;另外,函数零点的几种等价形式:函数的零点函数在轴的交点方程的根函数与的交点. 5、A 【解析】由已知利用诱导公式求得,进一步求得,再利用三角函数的基本关系式,即可求解 【详解】由题意,得, 又由为第二象限角,所以,所以 故选:A. 6、A 【解析】根据指数函数的性质一一判断可得; 【详解】解:对于A:在定义域上单调递减,所以,故A正确; 对于B:在定义域上单调递增,所以,故B错误; 对于C:因为,,所以,故C错误; 对于D:因为,,即,所以,故D错误; 故选:A 7、C 【解析】根据新定义把不等式转化为一般的一元二次不等式,然后由一元二次不等式恒成立得结论

10、 【详解】∵(x-a)⊙(x+a)=(x-a)(1-x-a), ∴不等式(x-a)⊙(x+a)<1, 即(x-a)(1-x-a)<1对任意实数x恒成立,即x2-x-a2+a+1>0对任意实数x恒成立, 所以Δ=1-4(-a2+a+1)<0, 解得, 故选:C. 8、D 【解析】由函数的定义域为,值域依次对各选项判断即可 【详解】解:由函数的定义域为,值域, 对于定义域为,值域,,错误; 对于的定义域为,值域,错误; 对于的定义域为,,值域,,错误; 对于的定义域为,值域,正确, 故选: 9、A 【解析】本道题目分别结合平面与平面平行判定与性质,平面与平面平行垂直判

11、定与性质,即可得出答案. 【详解】A选项,结合一条直线与一平面垂直,则过该直线的平面垂直于这个平面,故正确;B选项,平面垂直,则位于两平面的直线不一定垂直,故B错误;C选项,可能平行于与相交线,故错误;D选项,m与n可能异面,故错误 【点睛】本道题目考查了平面与平面平行判定与性质,平面与平面平行垂直判定与性质,发挥空间想象能力,找出选项的漏洞,即可. 10、A 【解析】先求出a,b,c的范围,再比较大小即得解. 【详解】由题得 , , 所以a>b>c. 故选A 【点睛】本题主要考查对数函数和指数函数的单调性的应用,考查实数大小的比较,意在考查学生对这些知识的理解掌握水平和分

12、析推理能力. 二、填空题:本大题共6小题,每小题5分,共30分。 11、## 【解析】首先根据同角三角函数的基本关系求出,再利用二倍角公式及同角三角函数的基本关系将弦化切,最后代入计算可得; 【详解】解:因为,所以,所以 故答案为: 12、②③ 【解析】利用特殊值法可判断命题①的正误;利用函数奇偶性的定义可判断命题②的正误;利用对称性的定义可判断命题③的正误;取可判断命题④的正误.综合可得出结论. 【详解】对于命题①,,,则, 所以,函数的图象不关于轴对称,命题①错误; 对于命题②,函数的定义域为,定义域关于原点对称, , 所以,函数的图象关于原点对称,

13、命题②正确; 对于命题③,, ,则, 所以,函数的图象关于直线对称,命题③正确; 对于命题④,当时,,则, 命题④错误. 故答案为:②③. 【点睛】本题考查正弦型函数的奇偶性、对称性以及最值的求解,考查推理能力与计算能力,属于中等题. 第ⅠⅠ卷 13、 【解析】数形结合,由条件得在上有个不相等的实数根,结合图象分析根的个数列不等式求解即可. 【详解】作出函数图象如图所示: 由,得, 所以,且, 若,即在上有个不相等的实数根, 则 或, 解得. 故答案为: 【点睛】方法点睛:判定函数的零点个数的常用方法: (1)直接法:直接求解函数对应方程的根,得到方程

14、的根,即可得出结果; (2)数形结合法:先令,将函数的零点个数,转化为对应方程的根,进而转化为两个函数图象的交点个数,结合图象,即可得出结果. 14、 【解析】先将角度转化成弧度制,再利用扇形面积公式计算即可. 【详解】扇形的圆心角为120°,即,故扇形面积. 故答案为:. 15、1 【解析】由函数f(x)是定义在R上的偶函数及f(x-1)是奇函数得到函数的周期,进而根据函数的性质求得答案. 【详解】根据题意,函数f(x)是定义在R上的偶函数,则有f(-x)=f(x),又f(x-1)是奇函数,则f(-x-1)=-f(x-1),所以f(x+2)=f[-(x+2)]=f[-(x+1

15、-1]=-f[(x+1)-1]=-f(x),即f(x+2)=-f(x),则有f(x+4)=-f(x+2)=f(x),所以函数f(x)是周期为4的周期函数,则,,故 故答案为:1. 16、①②④ 【解析】直接利用奇函数的定义,函数图象的平移变换,象限角,三角函数的恒等变换以及余弦函数图像的性质即可判断. 【详解】对于①,其中, 即为奇函数,则①正确; 对于②将的图象向右平移个单位长度, 即,则②正确; 对于③若令,,则,则③不正确; 对于④ , 由题意可知,任意一个长为的开区间上至少包含函数的一个周期, 的周期为,则,即,则的最小值是4, 则④正确; 故答案为:①②④

16、 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(1); (2)(i)时,,;时,,;时,,;(ii)证明部分见解析. 【解析】(1)先求,的范围,再求的最大值,利用恒成立问题的方式处理;(2)分类讨论对称轴是否落在上即可;先求的最大值,需观察发现最值在取得,不要尝试用三倍角公式,另外的最大值必定在端点或者在顶点处取得,通过讨论的范围,证明即可 【小问1详解】 时,单调递增,于是,于是 ,则最大值为,又恒成立,故 ,注意到是正整数,于是符合要求的为. 【小问2详解】 (i)依题意得,为开口向上,对称轴为的二次函数,于是在上递减

17、在上递增,由于,,下分类讨论:当,即时,, ;当,即时, ,;当, 即当,在上递减,,. (ii),则,当,即取等号,,,则 ,下令 ,只需说明时,即可,分类如下: 当时,,且注意到 ,此时 ,显然时,单调递减,于是; 当,由基本不等式,,且 ,,即,此时,而 ,时, 由基本不等式,,故有: 综上,时,,即当时,最小正整数 【点睛】本题综合的考查了分类讨论思想,函数值域的求法等问题,特别是观察分析出的最大值,若用三倍角公式反倒会变得更加复杂. 18、(1)见解析;(2)见解析. 【解析】(1)只需证得,即可证得平面; (2)因为平面, 平面, 所以,即可证

18、得平面,从而得证. 试题解析: (1)在与中, 因为, 所以, 又因为,所以在中,有,则. 又因为平面,平面,所以平面. (2)因为平面, 平面, 所以. 又因为,平面,平面,, 所以平面, 平面,所以 19、(1);(2). 【解析】(1)先根据的值和二者的平方关系联立求得的值,再把平方即可求出; (2)结合(1)求,的值,最后利用商数关系求得的值,代入即可得解 【详解】(1)∵, ∴, ∴, ∵, ∴,,, ∴, ∴. (2)由,, 解得,, ∴ ∵,, ∴ 【点睛】方法点睛:三角恒等常用的方法:三看(看角、看名、看式),三变(变角、变名、变

19、式). 20、(1)见解析(2) 【解析】(1)利用换元法设,求出的范围,再由对数函数的性质得出值域,再结合复合函数的单调性得出的单调区间; (2)分别讨论,两种情况,结合复合函数的单调性以及二次函数的性质得出a的取值范围. 【详解】(1)当时, 设,由,解得 即函数的定义域为,此时 则,即的值域为 要求单调增(减)区间,等价于求的增(减)区间 在区间上单调递增,在区间上单调递减 在区间上单调递增,在区间上单调递减 (2)当时,存在单调递增区间,则函数存在单调递增区间 则判别式,解得或(舍) 当时,存在单调递增区间,则函数存在单调递减区间 则判别式,解得或,此时不成

20、立 综上,a的取值范围为 【点睛】关键点睛:本题主要考查了对数型复合函数的单调性问题,解题的关键在于利用复合函数单调性的性质进行求解. 21、(1),理由见解析 (2), (3),理由见解析 【解析】(1)根据表格中的数据进行分析,可排除一次函数和二次函数,再根据待定系数法,即可得到结果; (2)由(1),令,可求出的值,即可知道①处的值;由已知可得时,可得,进而可求出当时的值,进而求出②处的值; (3)设烟花噪声、鞭炮噪声和飞机起飞时发动机噪声的声强级分别为,由已知可得,代入关系式,即可判断与的大小关系. 【小问1详解】 解:选择. 由表格中的前四组数据可知,当自变量增加量为时,函数值的增加量不是 同一个常数,所以不应该选择一次函数; 同时当自变量增加量为时,函数值的增加量从变为,后又缩小为,函数值的增加量越来越小,也不应该选择二次函数; 故应选择. 由已知可得:,即,解之得 所以解析式为. 【小问2详解】 解:由(1)知, 令,可得,,故①处应填; 由已知可得时,, 所以, 又当时,, 故②处应填. 【小问3详解】 解:设烟花噪声、鞭炮噪声和飞机起飞时发动机噪声的声强级分别为, 由已知, 故有, 所以, 因此,即,所以.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服