ImageVerifierCode 换一换
格式:DOC , 页数:13 ,大小:718.50KB ,
资源ID:12790298      下载积分:12.58 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/12790298.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(北京市丰台区重点中学2025年高一上数学期末经典试题含解析.doc)为本站上传会员【zj****8】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

北京市丰台区重点中学2025年高一上数学期末经典试题含解析.doc

1、北京市丰台区重点中学2025年高一上数学期末经典试题 考生请注意: 1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。 2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。 3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.△ABC的内角、、的对边分别为、、,若,,,则() A. B. C. D. 2.下列命题中正确的是() A.第一象限角小

2、于第二象限角 B.锐角一定是第一象限角 C.第二象限角是钝角 D.平角大于第二象限角 3.已知,都是正数,则“”是“”的() A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件 4.已知向量=(1,2),=(2,x),若⊥,则|2+|=(  ) A. B.4 C.5 D. 5.设函数,若关于的方程有四个不同的解,且,则的取值范围是( ) A. B. C. D. 6.函数是指数函数,则的值是 A.4 B.1或3 C.3 D.1 7.已知角的终边过点,则等于( ) A.2 B. C. D. 8.酒驾是严重危害交通安全的违法行

3、为.根据国家有关规定:驾驶人血液中的酒精含量大于(或等于)毫克/毫升,小于毫克/毫升的情况下驾驶机动车属于饮酒驾车;含量大于(或等于)毫克/毫升的情况下驾驶机动车属于醉酒驾车.假设某驾驶员一天晚上点钟喝了一定量的酒后,其血液中酒精含量上升到毫克/毫升.如果在停止喝酒后,他血液中酒精含量以每小时的速度减少,则他次日上午最早()点(结果取整数)开车才不构成酒驾.(参考数据:,) A. B. C. D. 9.已知函数,若对任意,总存在,使得,则实数的取值范围是( ) A. B. C. D. 10.已知函数是幂函数,且其图象与两坐标轴都没有交点,则实数   A. B.2 C.3

4、D.2或 二、填空题:本大题共6小题,每小题5分,共30分。 11.已知平面向量,,若,则______ 12.计算=_______________ 13.函数的单调递增区间为________________. 14.已知函数且 (1)若函数在区间上恒有意义,求实数的取值范围; (2)是否存在实数,使得函数在区间上为增函数,且最大值为?若存在,求出的值;若不存在,请说明理由 15.已知幂函数的图象过点,则______. 16.若函数满足以下三个条件:①定义域为R且函数图象连续不断;②是偶函数;③恰有3个零点.请写出一个符合要求的函数___________. 三、解答题:本大题

5、共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.判断并证明在的单调性. 18.如图,在平面直角坐标系xOy中,点A为单位圆与x轴正半轴的交点,点P为单位圆上的一点,且,点P沿单位圆按逆时针方向旋转角后到达点. (1)求阴影部分的面积; (2)当时,求的值. 19.已知函数的部分图象如图所示. (1)求的解析式; (2)把图象上所有点的横坐标缩小到原来的,再向左平移个单位长度,向下平移1个单位长度,得到的图象,求的单调区间. 20.如图,四面体中,平面,,,,. (Ⅰ)求四面体的四个面的面积中,最大的面积是多少? (Ⅱ)证明:在线段上存在点,使得

6、并求的值 21.已知函数,(其中,,)的图象与轴的交点中,相邻两个交点之间的距离为,且图象上一个最高点为. (1)求函数的解析式; (2)先把函数的图象向左平移个单位长度,然后再把所得图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数的图象,若总存在,使得不等式成立,求实数的最小值. 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、C 【解析】由已知利用余弦定理可求的值,利用等腰三角形的性质可求的值. 【详解】解:∵,,, ∴由余弦定理可得, 求得:c=1. ∴ ∴. 故选:C.

7、 【点睛】本题主要考查了余弦定理在解三角形中应用,属于基础题. 2、B 【解析】根据象限角的定义及锐角、钝角及平角的大小逐一分析判断即可得解. 【详解】解:为第一象限角,为第二象限角,故A错误; 因为锐角,所以锐角一定是第一象限角,故B正确; 因为钝角,平角, 为第二象限角,故CD错误. 故选:B. 3、B 【解析】利用特殊值法、基本不等式结合充分条件、必要条件的定义判断可得出结论. 【详解】充分性:由于,,且,取,则,充分性不成立; 必要性:由于,,且,解得,必要性成立. 所以,当,时,“”“” 必要不充分条件. 故选:B. 4、C 【解析】根据求出x的值,再

8、利用向量的运算求出的坐标,最后利用模长公式即可求出答案 【详解】因为,所以 解得, 所以,因此,故选C 【点睛】本题主要考查向量的坐标预算以及模长求解,还有就是关于向量垂直的判定与性质 5、D 【解析】由题意,根据图象得到,,,,, 推出.令,,而函数.即可求解. 【详解】 【点睛】方法点睛: 已知函数零点个数(方程根的个数)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决; (3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中

9、画出函数的图象,利用数形结合的方法求解. 6、C 【解析】由题意,解得.故选C 考点:指数函数的概念 7、B 【解析】由正切函数的定义计算 【详解】由题意 故选:B 8、D 【解析】根据题意可得不等式,解不等式可求得,由此可得结论. 【详解】假设经过小时后,驾驶员开车才不构成酒驾, 则,即,, 则,, 次日上午最早点,该驾驶员开车才不构成酒驾. 故选:D. 9、C 【解析】先将不等式转化为对应函数最值问题:,再根据函数单调性求最值,最后解不等式得结果. 【详解】因为对任意,总存在,使得,所以, 因为当且仅当时取等号,所以, 因为,所以. 故选:C. 【

10、点睛】对于不等式任意或存在性问题,一般转化为对应函数最值大小关系,即;, 10、A 【解析】根据幂函数的定义,求出m的值,代入判断即可 【详解】函数是幂函数, ,解得:或, 时,,其图象与两坐标轴有交点不合题意, 时,,其图象与两坐标轴都没有交点,符合题意, 故, 故选A 【点睛】本题考查了幂函数的定义,考查常见函数的性质,是一道常规题 二、填空题:本大题共6小题,每小题5分,共30分。 11、 【解析】求出,根据,即,进行数量积的坐标运算,列出方程,即可求解 【详解】由题意知,平面向量,,则; 因为,所以,解得 故答案为 【点睛】本题主要考查了向量

11、的坐标运算,以及向量的数量积的应用,其中解答中根据平面向量垂直的条件,得到关于的方程是解答的关键,着重考查了运算与求解能力,属于基础题. 12、 【解析】原式 考点:三角函数化简与求值 13、 【解析】函数由,复合而成,求出函数的定义域,根据复合函数的单调性即可得结果. 【详解】函数由,复合而成,单调递减 令,解得或,即函数的定义域为, 由二次函数的性质知在是减函数,在上是增函数, 由复合函数的单调性判断知函数的单调递增区间, 故答案为. 【点睛】本题考查用复合函数的单调性求单调区间,此题外层是一对数函数,故要先解出函数的定义域,在定义域上研究函数的单调区间,这是本题易失

12、分点,切记! 14、(1) (2)存在;(或) 【解析】(1)由题意,得在上恒成立,参变分离得恒成立,再令新函数,判断函数的单调性,求解最大值,从而求出的取值范围;(2)在(1)的条件下,讨论与两种情况,利用复合函数同增异减的性质求解对应的取值范围,再利用最大值求解参数,并判断是否能取到. 【小问1详解】 由题意,在上恒成立,即在恒成立,令,则在上恒成立,令所以函数在在上单调递减,故 则,即的取值范围为. 【小问2详解】 要使函数在区间上为增函数,首先在区间上恒有意义,于是由(1)可得,①当时,要使函数在区间上为增函数, 则函数在上恒正且为增函数, 故且,即,此时的最大值为

13、即,满足题意 ②当时,要使函数在区间上为增函数, 则函数在上恒正且为减函数, 故且,即, 此时的最大值为即,满足题意 综上,存在(或) 【点睛】一般关于不等式在给定区间上恒成立的问题都可转化为最值问题,参变分离后得恒成立,等价于;恒成立,等价于成立. 15、 【解析】结合幂函数定义,采用待定系数法可求得解析式,代入可得结果. 【详解】为幂函数,可设,,解得:, ,. 故答案为:. 【点睛】本题考查幂函数解析式和函数值的求解问题,关键是能够明确幂函数的定义,采用待定系数法求解函数解析式,属于基础题. 16、(答案不止一个) 【解析】根据偶函数和零点的定义进行求解即可.

14、 详解】函数符合题目要求,理由如下: 该函数显然满足①; 当时,,所以有, 当时,,所以有,因此该函数是偶函数,所以满足② 当时,,或, 当时,,或舍去,所以该函数有3个零点,满足③, 故答案为: 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、函数在单调递增 【解析】根据函数单调性的定义进行证明即可 【详解】根据函数单调性定义: 任取,所以 因为,所以,所以 所以原函数单调递增。 18、(1)(2) 【解析】 (1)由三角函数定义求出点坐标,用扇形面积减三角形面积可得弓形面积; (2)由三角函数定义写出点坐标,计

15、算后用二倍角公式和诱导公式计算 【详解】(1)由三角函数定义可知,点P的坐标为. 所以面积为, 扇形OPA的面积为. 所以阴影部分的面积为. (2)由三角函数的定义,可得. 当时,, 即, 所以. 【点睛】本题考查三角函数的定义,正弦的二倍角公式和诱导公式,属于基础题. 19、(1) (2)单调递减区间为,单调递增区间为 【解析】(1)根据最值求的值;根据周期求的值;把点代入求的值. (2)首先根据图象的变换求出的解析式,然后利用整体代入的方法即可求出的单调区间. 【小问1详解】 由图可知,所以,. 又,所以,因为,所以. 因为,所以, 即,又|,得, 所

16、以. 【小问2详解】 由题意得, 由,得, 故的单调递减区间为, 由,得, 故的单调递增区间为. 20、 (Ⅰ);(Ⅱ)证明见解析. 【解析】(1)易得,,,均为直角三角形,且的面积最大,进而求解即可; (2)在平面ABC内,过点B作BN⊥AC,垂足为N.在平面PAC内,过点N作MN∥PA交PC于点M,连接BM,可证得AC⊥平面MBN,从而使得AC⊥BM,利用相似和平行求解即可. 试题解析: (1)由题设AB=1,AC=2,BC=, 可得,所以, 由PA⊥平面ABC,BC、AB⊂平面ABC,所以,, 所以, 又由于PA∩AB=A,故BC⊥平面PAB, PB⊂

17、平面PAB,所以, 所以,,,均为直角三角形,且的面积最大, . (2)证明:在平面ABC内,过点B作BN⊥AC,垂足为N.在平面PAC内,过点N作MN∥PA交PC于点M,连接BM. 由PA⊥平面ABC知PA⊥AC,所以MN⊥AC 由于BN∩MN=N,故AC⊥平面MBN. 又BM⊂平面MBN,所以AC⊥BM. 因为与相似,, 从而NC=AC-AN=. 由MN∥PA,得==. 21、(1);(2). 【解析】(1)根据相邻两个交点之间的距离为可求出,由图像上一个最高点为可求出,,从而得到函数的解析式; (2)根据三角变换法则可得,再求出在上的最小值,利用对数函数的单调性即可求出实数的最小值 【详解】(1)∵,∴,解得. 又函数图象上一个最高点为, ∴,(),∴(),又, ∴,∴ (2)把函数的图象向左平移个单位长度,得到;然后再把所得图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数的图象,即, ∵,∴,,依题意知,, ∴,即实数的最小值为.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服