1、剖析题型 提炼方法,实验解读,构建知识网络 强化答题语句,探究高考 明确考向,*,*,*,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,*,*,第,2,讲数列求和问题,专题,三,数列与不等式,板块三专题突破关键考点,1/42,考情考向分析,数列求和问题作为数列基础知识,为数列与不等式等综合问题提供必要准备,2/42,热点分类突破,真题押题精练,内容索引,3/42,热点分类突破,4/42,热点一分组转化法求和,有些数列,既不是等差数列,也不是等比数列,若将数列通项拆开或变形,可转化为几个等差、等比数列或常见数列,即先分别求和,然后再合并,5/42,解
2、设等比数列,a,n,公比为,q,,且,q,0,,,由,a,n,0,,,a,1,a,3,4,,得,a,2,2,,,又,a,3,是,a,2,2,与,a,4,等差中项,,故,2,a,3,a,2,2,a,4,,,22,q,2,2,2,q,2,,,q,2,或,q,0(,舍,),a,n,a,2,q,n,2,2,n,1,,,a,n,1,2,n,,,b,n,n,(,n,N,*,),例,1,在各项均为正数等比数列,a,n,中,,a,1,a,3,4,,,a,3,是,a,2,2,与,a,4,等差中项,若,a,n,1,(,n,N,*,),(1),求数列,b,n,通项公式;,解答,6/42,解答,7/42,在处理普通
3、数列求和时,一定要注意使用转化思想把普通数列求和转化为等差数列或等比数列进行求和,在求和时要分清楚哪些项组成等差数列,哪些项组成等比数列,清楚正确地求解在利用分组求和法求和时,因为数列各项是正负交替,所以普通需要对项数,n,进行讨论,最终再验证是否能够合并为一个公式,思维升华,8/42,解答,9/42,解,设,a,n,公差为,d,,,因为,a,2,3,,,a,n,前,4,项和为,16,,,解得,a,1,1,,,d,2,,,所以,a,n,1,(,n,1),2,2,n,1(,n,N,*,),10/42,(2),求数列,b,n,前,n,项和,S,n,.,解答,解,由,(1),得,b,n,3,n,2,
4、n,1,,,所以,S,n,(3,3,2,3,3,3,n,),(1,3,5,2,n,1),11/42,热点二错位相减法求和,错位相减法是在推导等比数列前,n,项和公式时所用方法,这种方法主要用于求数列,a,n,b,n,前,n,项和,其中,a,n,,,b,n,分别是等差数列和等比数列,12/42,(1),求数列,b,n,通项公式;,解答,所以数列,b,n,是公差为,3,等差数列,,所以,b,n,b,1,3(,n,1),3,n,1(,n,N,*,),13/42,(2),求数列,a,n,前,n,项和,S,n,.,解答,14/42,(1),错位相减法适合用于求数列,a,n,b,n,前,n,项和,其中,a
5、n,为等差数列,,b,n,为等比数列,(2),所谓,“,错位,”,,就是要找,“,同类项,”,相减要注意是相减后得到部分求等比数列和,此时一定要查清其项数,(3),为确保结果正确,可对得到和取,n,1,2,进行验证,思维升华,15/42,(1),求数列,a,n,,,b,n,通项公式;,解答,16/42,d,2,2,d,0,,因为,d,0,,所以,d,2,,所以,b,n,2,n,1(,n,N,*,),17/42,(2),设,c,n,a,n,b,n,,求数列,c,n,前,n,项和,T,n,.,解答,18/42,19/42,热点三裂项相消法求和,裂项相消法是指把数列和式中各项分别裂开后,一些项能够
6、相互抵消从而求和方法,主要适合用于,(,其中,a,n,为等差数列,),等形式数列求和,20/42,例,3,已知数列,a,n,前,n,项和,S,n,满足:,S,n,a,(,S,n,a,n,1)(,n,N,*,)(,a,为常数,,a,0,,,a,1),(1),求,a,n,通项公式;,解答,n,1,时,,a,1,a,.,n,2,时,,S,n,1,a,(,S,n,1,a,n,1,1),,,S,n,S,n,1,a,n,a,(,S,n,S,n,1,),aa,n,aa,n,1,,,数列,a,n,是以,a,为首项,,a,为公比等比数列,,a,n,a,n,(,n,N,*,),21/42,(2),设,b,n,a,
7、n,S,n,,若数列,b,n,为等比数列,求,a,值;,解答,解,由,b,n,a,n,S,n,得,,b,1,2,a,,,b,2,2,a,2,a,,,b,3,2,a,3,a,2,a,.,数列,b,n,为等比数列,,22/42,解答,23/42,(1),裂项相消法基本思想就是把通项,a,n,分拆成,a,n,b,n,k,b,n,(,k,1,,,k,N,*,),形式,从而在求和时到达一些项相消目标,在解题时要善于依据这个基本思想变换数列,a,n,通项公式,使之符合裂项相消条件,(2),惯用裂项公式,思维升华,24/42,25/42,(1),求数列,a,n,通项公式;,解答,26/42,又数列,a,n,
8、为递增数列,,a,1,1,,,a,n,a,n,1,0,,,27/42,a,2,a,1,2,,符合,a,n,a,n,1,2,,,a,n,是以,1,为首项,以,2,为公差等差数列,,a,n,1,(,n,1),2,2,n,1(,n,N,*,),28/42,解答,又,n,N,*,,,n,最小值为,10.,29/42,真题押题精练,30/42,真题体验,解析,答案,31/42,解析,设等差数列,a,n,公差为,d,,,32/42,2.(,天津,),已知,a,n,为等差数列,前,n,项和为,S,n,(,n,N,*,),,,b,n,是首项为,2,等比数列,且公比大于,0,,,b,2,b,3,12,,,b,3
9、a,4,2,a,1,,,S,11,11,b,4,.,(1),求,a,n,和,b,n,通项公式;,解答,33/42,解,设等差数列,a,n,公差为,d,,等比数列,b,n,公比为,q,.,由已知,b,2,b,3,12,,得,b,1,(,q,q,2,),12,,,又,b,1,2,,所以,q,2,q,6,0.,又因为,q,0,,解得,q,2,,所以,b,n,2,n,.,由,b,3,a,4,2,a,1,,可得,3,d,a,1,8,,,由,S,11,11,b,4,,可得,a,1,5,d,16,,,联立,,解得,a,1,1,,,d,3,,,由此可得,a,n,3,n,2(,n,N,*,),所以数列,a,n
10、通项公式为,a,n,3,n,2(,n,N,*,),,数列,b,n,通项公式为,b,n,2,n,(,n,N,*,),34/42,(2),求数列,a,2,n,b,2,n,1,前,n,项和,(,n,N,*,),解答,35/42,解,设数列,a,2,n,b,2,n,1,前,n,项和为,T,n,,由,a,2,n,6,n,2,,,b,2,n,1,2,4,n,1,,,得,a,2,n,b,2,n,1,(3,n,1),4,n,,,故,T,n,2,4,5,4,2,8,4,3,(3,n,1),4,n,,,4,T,n,2,4,2,5,4,3,8,4,4,(3,n,4),4,n,(3,n,1),4,n,1,,,,得,
11、3,T,n,2,4,3,4,2,3,4,3,3,4,n,(3,n,1),4,n,1,36/42,押题预测,答案,解析,押题依据,押题依据,数列通项以及求和是高考重点考查内容,也是考试纲领中明确提出知识点,年年在考,年年有变,变是试题外壳,即在题设条件上有变革,有创新,但在变中有不变性,即解答问题惯用方法有规律可循,1.,已知数列,a,n,通项公式为,a,n,(,n,N,*,),,其前,n,项和为,S,n,,若,存在,M,Z,,满足对任意,n,N,*,,都有,S,n,0,,,2,b,n,1,b,n,,,40/42,解答,(2),设,c,n,a,n,b,n,,求数列,c,n,前,n,项和,T,n,.,41/42,42/42,






