1、第,2,讲数列求和问题,专题四数列、推理与证实,1/53,热点分类突破,真题押题精练,2/53,热点分类突破,3/53,热点一分组转化求和,有些数列,既不是等差数列,也不是等比数列,若将数列通项拆开或变形,可转化为几个等差、等比数列或常见数列,即先分别求和,然后再合并,.,4/53,例,1,(,山东省平阴县第一中学模拟,),已知数列,a,n,是等差数列,其前,n,项和为,S,n,,数列,b,n,是公比大于,0,等比数列,且,b,1,2,a,1,2,,,a,3,b,2,1,,,S,3,2,b,3,7.,(1),求数列,a,n,和,b,n,通项公式;,解答,5/53,解,设数列,a,n,公差为,
2、d,,,b,n,公比为,q,,且,q,0,,,由题易知,,a,1,1,,,b,1,2,,,a,n,2,n,1,,,b,n,2,n,.,6/53,解答,思维升华,7/53,解,由,(1),知,,a,n,2,n,1,,,b,n,2,n,,,T,n,(,c,1,c,3,c,5,c,n,1,),(,c,2,c,4,c,n,),n,(,c,2,c,4,c,n,),,,令,H,n,c,2,c,4,c,6,c,n,,,8/53,以上两式相减,得,9/53,10/53,当,n,(,n,3),为奇数时,,n,1,为偶数,,经验证,,n,1,也适合上式,.,11/53,思维升华,在处理普通数列求和时,一定要注意使
3、用转化思想,.,把普通数列求和转化为等差数列或等比数列进行求和,在求和时要分析清楚哪些项组成等差数列,哪些项组成等比数列,清楚正确地求解,.,在利用分组求和法求和时,因为数列各项是正负交替,所以普通需要对项数,n,进行讨论,最终再验证是否能够合并为一个公式,.,12/53,证实,13/53,14/53,得,na,n,1,2(,n,1),a,n,n,(,n,1),,,由,a,1,0,及递推关系,可知,a,n,0,,,15/53,16/53,(2),求数列,a,n,前,n,项和,S,n,.,解答,17/53,a,n,n,2,n,n,,,S,n,2,2,2,2,3,2,3,(,n,1)2,n,1,n
4、2,n,1,2,3,(,n,1),n,,,设,T,n,2,2,2,2,3,2,3,(,n,1)2,n,1,n,2,n,,,则,2,T,n,2,2,2,2,3,3,2,4,(,n,1)2,n,n,2,n,1,,,由,,得,T,n,2,2,2,2,3,2,n,n,2,n,1,18/53,T,n,(,n,1)2,n,1,2,,,19/53,热点二错位相减法求和,错位相减法是在推导等比数列前,n,项和公式时所用方法,这种方法主要用于求数列,a,n,b,n,前,n,项和,其中,a,n,,,b,n,分别是等差数列和等比数列,.,20/53,(1),求数列,a,n,和,b,n,通项公式;,解答,21/53
5、解,因为数列,a,n,为等差数列,,又因为,a,3,5,,所以,a,1,1,,所以,a,n,2,n,1.,所以,b,n,2,b,n,1,,,即数列,b,n,是首项为,1,,公比为,2,等比数列,,所以,b,n,(,2),n,1,.,22/53,(2),设,c,n,a,n,|,b,n,|,,求数列,c,n,前,n,项和,T,n,.,解,因为,c,n,a,n,|,b,n,|,(2,n,1)2,n,1,,,所以,T,n,1,1,3,2,5,2,2,(2,n,1)2,n,1,,,2,T,n,1,2,3,2,2,5,2,3,(2,n,1)2,n,,,两式相减,得,T,n,1,1,2,2,2,2,2,2
6、2,n,1,(2,n,1)2,n,1,2(2,2,2,2,n,1,),(2,n,1)2,n,1,2,n,1,4,(2,n,1)2,n,3,(3,2,n,)2,n,,,所以,T,n,3,(2,n,3)2,n,.,解答,思维升华,23/53,思维升华,(1),错位相减法适合用于求数列,a,n,b,n,前,n,项和,其中,a,n,为等差数列,,b,n,为等比数列,.,(2),所谓,“,错位,”,,就是要找,“,同类项,”,相减,.,要注意是相减后得到部分求等比数列和,此时一定要查清其项数,.,(3),为确保结果正确,可对得到和取,n,1,2,进行验证,.,24/53,(1),求数列,a,n,与,b
7、n,通项公式;,解答,25/53,解,当,n,1,时,,a,1,1,,,当,n,2,时,,a,n,S,n,S,n,1,2,n,1(,n,N,*,),,,检验,a,1,1,,满足,a,n,2,n,1(,n,N,*,).,且,b,n,0,,,2,b,n,1,b,n,,,26/53,(2),设,c,n,a,n,b,n,,求数列,c,n,前,n,项和,T,n,.,解答,27/53,28/53,29/53,热点三裂项相消法求和,裂项相消法是指把数列和式中各项分别裂开后,一些项能够相互抵消从而求和方法,主要适合用于,(,其中,a,n,为等差数列,),等形式数列求和,.,30/53,例,3,(,届山东省青
8、岛市二模,),在公差不为,0,等差数列,a,n,中,,a,3,a,6,,且,a,3,为,a,1,与,a,11,等比中项,.,(1),求数列,a,n,通项公式;,解,设数列,a,n,公差为,d,,,即,(,a,1,2,d,),2,a,1,(,a,1,10,d,),,,d,0,,由,解得,a,1,2,,,d,3.,数列,a,n,通项公式为,a,n,3,n,1.,(,a,1,d,),2,a,1,2,d,a,1,5,d,,,解答,思维升华,31/53,思维升华,裂项相消法基本思想就是把通项,a,n,分拆成,a,n,b,n,k,b,n,(,k,1,,,k,N,*,),形式,从而在求和时到达一些项相消目标
9、在解题时要善于依据这个基本思想变换数列,a,n,通项公式,使之符合裂项相消条件,.,32/53,解答,思维升华,33/53,思维升华,惯用裂项公式,34/53,(1),求数列,a,n,通项公式;,解答,35/53,36/53,解答,37/53,38/53,39/53,真题押题精练,40/53,真题体验,1.(,全国,),等差数列,a,n,前,n,项和为,S,n,,,a,3,3,,,S,4,10,,则,_.,答案,解析,1,2,41/53,解析,设等差数列,a,n,公差为,d,,则,1,2,42/53,2.(,天津,),已知,a,n,为等差数列,前,n,项和为,S,n,(,n,N,*,),,,
10、b,n,是首项为,2,等比数列,且公比大于,0,,,b,2,b,3,12,,,b,3,a,4,2,a,1,,,S,11,11,b,4,.,(1),求,a,n,和,b,n,通项公式;,1,2,解答,43/53,解,设等差数列,a,n,公差为,d,,等比数列,b,n,公比为,q,.,由已知,b,2,b,3,12,,得,b,1,(,q,q,2,),12,,而,b,1,2,,,所以,q,2,q,6,0.,又因为,q,0,,解得,q,2,,所以,b,n,2,n,.,由,b,3,a,4,2,a,1,,可得,3,d,a,1,8,,,由,S,11,11,b,4,,可得,a,1,5,d,16,,,联立,,解得,
11、a,1,1,,,d,3,,由此可得,a,n,3,n,2.,所以数列,a,n,通项公式为,a,n,3,n,2,,数列,b,n,通项公式为,b,n,2,n,.,1,2,44/53,(2),求数列,a,2,n,b,2,n,1,前,n,项和,(,n,N,*,).,1,2,解答,45/53,解,设数列,a,2,n,b,2,n,1,前,n,项和为,T,n,,,由,a,2,n,6,n,2,,,b,2,n,1,2,4,n,1,,得,a,2,n,b,2,n,1,(3,n,1),4,n,,故,T,n,2,4,5,4,2,8,4,3,(3,n,1),4,n,,,4,T,n,2,4,2,5,4,3,8,4,4,(3,
12、n,4),4,n,(3,n,1),4,n,1,,,,得,3,T,n,2,4,3,4,2,3,4,3,3,4,n,(3,n,1),4,n,1,(3,n,2),4,n,1,8,,,1,2,46/53,押题预测,答案,解析,押题依据,数列通项以及求和是高考重点考查内容,也是考试纲领中明确提出知识点,年年在考,年年有变,变是试题外壳,即在题设条件上有变革,有创新,但在变中有不变性,即解答问题惯用方法有规律可循,.,1,2,1.,已知数列,a,n,通项公式为,a,n,,其前,n,项和为,S,n,,若存在,M,Z,,满足对任意,n,N,*,,都有,S,n,0),,且,4,a,3,是,a,1,与,2,a,2
13、等差中项,.,(1),求,a,n,通项公式;,解答,押题依据,错位相减法求和是高考重点和热点,本题先利用,a,n,,,S,n,关系求,a,n,,也是高考出题常见形式,.,1,2,押题依据,49/53,解,当,n,1,时,,S,1,a,(,S,1,a,1,1),,所以,a,1,a,,,当,n,2,时,,S,n,a,(,S,n,a,n,1),,,S,n,1,a,(,S,n,1,a,n,1,1),,,1,2,故,a,n,是首项,a,1,a,,公比为,a,等比数列,,所以,a,n,a,a,n,1,a,n,.,故,a,2,a,2,,,a,3,a,3,.,由,4,a,3,是,a,1,与,2,a,2,等差
14、中项,可得,8,a,3,a,1,2,a,2,,,50/53,即,8,a,3,a,2,a,2,,,因为,a,0,,整理得,8,a,2,2,a,1,0,,,即,(2,a,1)(4,a,1),0,,,1,2,51/53,解答,1,2,52/53,1,2,所以,T,n,3,2,5,2,2,7,2,3,(2,n,1),2,n,1,(2,n,1),2,n,,,2,T,n,3,2,2,5,2,3,7,2,4,(2,n,1)2,n,(2,n,1),2,n,1,,,由,,得,T,n,3,2,2(2,2,2,3,2,n,),(2,n,1),2,n,1,2,2,n,2,(2,n,1),2,n,1,2,(2,n,1),2,n,1,,,所以,T,n,2,(2,n,1),2,n,1,.,53/53,






