ImageVerifierCode 换一换
格式:PPTX , 页数:29 ,大小:362.01KB ,
资源ID:12650152      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/12650152.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(高二数学空间向量在立体几何证明中的应用省公开课金奖全国赛课一等奖微课获奖PPT课件.pptx)为本站上传会员【快乐****生活】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高二数学空间向量在立体几何证明中的应用省公开课金奖全国赛课一等奖微课获奖PPT课件.pptx

1、单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,空间向量,在立体几何证实中应用,新登中学高二数学备课组,1/29,前段时间我们研究了用空间向量求角(包含线线角、线面角和面面角)、求距离(包含线线距离、点面距离、线面距离和面面距离),今天我来研究怎样利用空间向量来处理立体几何中相关证实问题。,2/29,立体几何中相关证实问题,大致可分为“平行”“垂直”两大类:,平行:,线面平行、面面平行,垂直:,线线垂直、线面垂直和面面垂直,3/29,平行与垂直问题证实,除了要熟悉相关定理之外,下面几个性质必须掌握。,1、已知b,a不在内,假如ab,则a。,2、假如a,a

2、则。,3、假如ab,a,则b。(书本P22.6),4、假如a,b,ab,则。,4/29,一、用空间向量处理“平行”问题,5/29,G,A,E,D,C,B,F,H,M,N,例1.如图:ABCD与ABEF是正方形,CB平面ABEF,H、G分别是AC、BF上点,且AH=GF.求证:HG平面CBE.,MHAB,NG AB MHNG,AH=FG CH=BG CH:CA=BG:BF MH=NG,6/29,G,A,E,D,C,B,F,H,P,PHCB,PGBE,平面HPG平面CBE,HG平面CBE,7/29,G,A,E,D,C,B,F,H,o,z,y,证实:由已知得:AB、BC、BE两两垂直,故可建立如图

3、所表示空间直角坐标系o-xyz.,x,设正方形边长为1,AH=FG=a,则H(0,1-a,a)、,G(1-a,1-a,0),故 ,而平面CBE法向量为 (0,1,0),故 ,而 平面CBE 故 HG平面CBE,8/29,R,D,B,C,A,A,1,Q,P,N,M,D,1,C,1,B,1,例2.在正方体ABCD-A,1,B,1,C,1,D,1,中,P、Q分别是A,1,B,1,和BC上动点,且A,1,P=BQ,M是AB,1,中点,N是PQ中点.求证:MN平面AC.,M是中点,N是中点 MNRQ,MN平面AC,9/29,D,B,C,A,A,1,Q,P,N,M,D,1,C,1,B,1,作PP,1,AB

4、于P,1,,作MM,1,AB于M,1,,连结QP,1,,作NN,1,QP,1,于N,1,,连结M,1,N,1,N,1,M,1,P,1,NN,1,PP,1,MM,1,AA,1,又NN,1,、MM,1,均等于边长二分之一,故MM,1,N,1,N是平行四边形,故MNM,1,N,1,MN平面AC,10/29,D,B,C,A,A,1,Q,P,N,M,D,1,C,1,B,1,z,y,x,o,证实:建立如图所表示空间直角坐标系o-xyz,设正方形边长为2,又A,1,P=BQ=2x,则P(2,2x,2)、Q(2-2x,2,0)故N(2-x,1+x,1),而M(2,1,1),所以向量 (-x,x,0),又平面A

5、C法向量为 (0,0,1),,又M不在平面AC 内,所以MN平面AC,11/29,D,C,B,A,D,1,C,1,B,1,A,1,例3.在正方体ABCD-A,1,B,1,C,1,D,1,中,求证:平面A,1,BD平面CB,1,D,1,平行四边形A,1,BCD,1,A,1,BD,1,C,平行四边形DBB,1,D,1,B,1,D,1,BD,于是平面A,1,BD平面CB,1,D,1,12/29,D,C,B,A,D,1,C,1,B,1,A,1,o,z,y,x,证实:建立如图所表示空间直角坐标系o-xyz,设正方形边长为1,则向量,设平面BDA,1,法向量为,则有,x+z=0,x+y=0,令x=1,则得

6、方程组解为,x=1 y=-1 z=-1,故平面BDA,1,法向量为,13/29,同理可得平面CB,1,D,1,法向量为,则显然有,即得两平面BDA,1,和CB,1,D,1,法向量平行,所以 平面BDA,1,CB,1,D,1,经过本例练习,同学们要深入掌握平面法向量求法:即用平面内两个相交向量与假设法向量求数量积等于0,利用解方程组方法求出平面法向量(在解过程中可令其中一个未知数为某个数)。,例1、2与例3在利使用方法向量时有何不一样?,14/29,D,C,B,A,D,1,C,1,B,1,A,1,F,G,H,E,例4.在正方体ABCD-A,1,B,1,C,1,D,1,中,E、F、G、H分别是A,

7、1,B,1,、B,1,C,1,、C,1,D,1,、D,1,A,1,中点.求证:平面AEH平面BDGF,ADGF,AD=GF,又EHB,1,D,1,,GFB,1,D,1,EHGF,平行四边形ADGE AEDG,故得平面AEH平面BDGF,15/29,D,C,B,A,D,1,C,1,B,1,A,1,H,G,F,E,o,z,y,x,略证:建立如图所表示空间直角坐标系o-xyz,则求得平面AEF法向量为,求得平面BDGH法向量为,显然有,故 平面AEH平面BDGF,16/29,二、用空间向量处理“垂直”问题,17/29,D,A,C,B,B,C,D,A,F,E,X,Y,Z,18/29,例6:如图,在正三

8、棱柱ABC-A,1,B,1,C,1,中,AB=AA,1,/3=a,E、F分别是BB,1,、CC,1,上点,且BE=a,CF=2a。求证:面AEF,面ACF。,A,F,E,C,1,B,1,A,1,C,B,x,z,y,19/29,A,F,E,C1,B1,A1,C,B,z,y,不防设 a=2,则A(0,0,0),B(,3,1,0),C(0,2,0),E(3,1,2),F(0,2,4),AE=(3,1,2)AF=(0,2,4),因为,x轴面ACF,所以可取面ACF法向量为m=(1,0,0),设n=(x,y,z)是面AEF法向量,则,x,nAE=,3x+y+2z=0,nAF=2y+4z=0,x=0,y=

9、2z,令z=1得,n=(0,-2,1),显然有m n=0,即,m,n,面AEF,面ACF,证实:如图,建立空间直角坐标系A-xyz,,20/29,A,D,C,B,求证:平面MNC平面PBC;,求点A到平面MNC距离。,已知ABCD是矩形,PD平面ABCD,PDDC,a,,AD ,M、N分别是AD、PB中点。,P,M,N,练习1,21/29,A,B,C,D,M,X,Y,Z,22/29,A,B,C,D,M,G,X,Y,Z,23/29,A,B,C,F,E,D,X,Y,Z,24/29,A,B,C,F,E,D,X,Z,25/29,A,B,C,F,E,D,X,Y,Z,26/29,小结:,利用向量相关知识

10、处理一些立体几何问题,是近年来很“热”话题,其原因是它把相关“证实”转化为“程序化计算”。本课时讲内容是立体几何中证实“线面平行、垂直”一些例子,结合我们以前讲述立体几何其它问题(如:求角、求距离等),大家从中能够深入看出基中一些解题“套路”。,利用向量解题 关键是建立适当空间直角坐标系及写出相关点坐标。,用代数方法处理立体几何问题是立体几何发展趋势,而向量是用代数方法处理立体几何问题主要工具,故,学会用向量法解立体几何问题是学好立体几何基础。,27/29,D,C,B,A,D,1,C,1,B,1,A,1,P,F,E,作业:1.在正方体ABCD-A,1,B,1,C,1,D,1,中,E、F分别是A,1,D,1,、,BB,1,中点,问:在边CC,1,上是否存在一点P,使A,1,C平面EFP?若存在,求出P位置;若不存在,请说明理由。,28/29,N,M,P,D,C,B,A,2.在四棱锥P-ABCD中,底ABCD是正方形,且PA=PB=PC=PD=AB=BC=CD =DA,M、N分别 是PA、BD上 动点,且PM:MA=BN:ND。问:直线MN与平面PBC有什么关系?请证实你结论.,29/29,

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服