ImageVerifierCode 换一换
格式:PPT , 页数:89 ,大小:3.93MB ,
资源ID:1264200      下载积分:16 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/1264200.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【1587****927】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【1587****927】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(正弦函数、余弦函数的性质(全).ppt)为本站上传会员【1587****927】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

正弦函数、余弦函数的性质(全).ppt

1、三角函数三角函数1.4.2正弦函数余弦函数的性质正弦函数余弦函数的性质正、余弦函数图像特征:正、余弦函数图像特征:-11-1在函数在函数 的图象上,起关键作用的点有:的图象上,起关键作用的点有:最高点:最高点:最低点:最低点:与与x轴的交点:轴的交点:注意:函数图注意:函数图像的凹凸性!像的凹凸性!知识回顾知识回顾:-11-1在函数在函数 的图象上,起关键作用的点有:的图象上,起关键作用的点有:最高点:最高点:最低点:最低点:与与x轴的交点:轴的交点:注意:函数图注意:函数图像的凹凸性!像的凹凸性!余弦函数余弦函数图像特征:图像特征:x6yo-12345-2-3-41y=sinx (x R)x

2、6o-12345-2-3-41y y=cosx (x R)一、正弦、余弦函数的周期性一、正弦、余弦函数的周期性 对于函数对于函数f(x),如果存在一个非零常数,如果存在一个非零常数T,使得,使得当当x取定义域内的每一个值时,都有取定义域内的每一个值时,都有 f(x+T)=f(x)那么函数那么函数f(x)就叫做周期函数,非零常数就叫做周期函数,非零常数T叫做这个叫做这个函数的周期。函数的周期。注:注:1、T要是非零常数要是非零常数 2、“每一个值每一个值”只要有一个反例,则只要有一个反例,则f(x)就不为周期函数(如就不为周期函数(如f(x0+t)f(x0))3、周期函数的周期周期函数的周期T往

3、往是多值的(如往往是多值的(如y=sinx 2,4,-2,-4,都是周都是周 期)期)4、周期、周期T中最小的正数叫做中最小的正数叫做f(x)的最小正周期(有些周期函数没有最小正周期)的最小正周期(有些周期函数没有最小正周期)正弦函数是周期函数,最小正周期是余弦函数是周期函数,最小正周期是一一.周期性周期性函数函数 的周期是的周期是函数函数 的周期是的周期是二二.奇偶性奇偶性为为奇奇函数函数为为偶偶函数函数三三.定义域和值域定义域和值域正弦函数正弦函数定义域:定义域:R值域:值域:-1,1余弦函数余弦函数定义域:定义域:R值域:值域:-1,1练习练习下列等式能否成立?下列等式能否成立?例例1.

4、求下列函数的定义域和值域。求下列函数的定义域和值域。定义域定义域值域值域0,12,40,2探究:正弦函数的最大值和最小值探究:正弦函数的最大值和最小值最大值:最大值:当当 时,时,有最大值有最大值最小值:最小值:当当 时,时,有最小值有最小值四四.最值最值探究:余弦函数的最大值和最小值探究:余弦函数的最大值和最小值最大值:最大值:当当 时,时,有最大值有最大值最小值:最小值:当当 时,时,有最小值有最小值x6o-12345-2-3-41y当且仅当当且仅当当且仅当当且仅当当且仅当当且仅当四、正弦、余弦函数的最值四、正弦、余弦函数的最值x6yo-12345-2-3-41例题例题求使函数求使函数 取

5、得最大值、最小值的取得最大值、最小值的自变量的集合,并写出最大值、最小值。自变量的集合,并写出最大值、最小值。化未知为已知化未知为已知分析:分析:令令则则例例2.下列函数有最大、最小值吗?如果有,请写出取最大、最下列函数有最大、最小值吗?如果有,请写出取最大、最小值时的自变量小值时的自变量x的集合,并说出最大、最小值分别是什么的集合,并说出最大、最小值分别是什么.解:解:这两个函数都有最大值、最小值这两个函数都有最大值、最小值.(1)使函数)使函数 取得最大值的取得最大值的x的集合,就是的集合,就是使函数使函数 取得最大值的取得最大值的x的集合的集合 使函数使函数 取得最小值的取得最小值的x的

6、集合,就是的集合,就是使函数使函数 取得最小值的取得最小值的x的集合的集合 函数函数 的最大值是的最大值是1+1=2;最小值是;最小值是-1+1=0.练习练习.下列函数有最大、最小值吗?如果有,请写出取最大、最下列函数有最大、最小值吗?如果有,请写出取最大、最小值时的自变量小值时的自变量x的集合,并说出最大、最小值分别是什么的集合,并说出最大、最小值分别是什么.解:解:(2)令)令t=2x,因为使函数因为使函数 取最大值的取最大值的t的集合是的集合是所以使函数所以使函数 取最大值的取最大值的x的集合是的集合是同理,使函数同理,使函数 取最小值的取最小值的x的集合是的集合是函数函数 取最大值是取

7、最大值是3,最小值是,最小值是-3。五、探究:正弦函数的单调性五、探究:正弦函数的单调性当当 在区间在区间上时,上时,曲线逐渐上升,曲线逐渐上升,sin的值由的值由 增大到增大到 。当当 在区间在区间上时,曲线逐渐下降,上时,曲线逐渐下降,sin的值由的值由 减小到减小到 。探究:正弦函数的单调性探究:正弦函数的单调性正弦函数在每个闭区间正弦函数在每个闭区间都是增函数,其值从都是增函数,其值从1增大到增大到1;而在每个闭区间而在每个闭区间上都是上都是减函数,其值从减函数,其值从1减小到减小到1。探究:余弦函数的单调性探究:余弦函数的单调性当当 在区间在区间上时,上时,曲线逐渐上升,曲线逐渐上升

8、,cos的值由的值由 增大到增大到 。曲线逐渐下降,曲线逐渐下降,sin的值由的值由 减小到减小到 。当当 在区间在区间上时,上时,探究:余弦函数的单调性探究:余弦函数的单调性由余弦函数的周期性知:由余弦函数的周期性知:其值从其值从1减小到减小到1。而在每个闭区间而在每个闭区间上都是减函数,上都是减函数,其值从其值从1增大到增大到1;在每个闭区间在每个闭区间都是都是增函数增函数,练习练习P46 (4)先画草图,然后根据草图判断先画草图,然后根据草图判断练习P46 练习1 五、正弦函数的单调性五、正弦函数的单调性 y=sinx (x R)增区间为增区间为 ,其值从其值从-1增至增至1xyo-12

9、34-2-31 x sinx 0 -1 0 1 0-1减区间为减区间为 ,其值从其值从 1减至减至-1 +2k,+2k,k Z +2k,+2k,k Z五、余弦函数的单调性五、余弦函数的单调性 y=cosx (x R)x cosx -0 -1 0 1 0-1减区间为减区间为 ,其值从其值从 1减至减至-12k,2k +,k Zyxo-1234-2-31增区间为增区间为 其值从其值从-1增至增至1 +2k ,+2k,k Z 例例3 3 比较下列各组数的大小比较下列各组数的大小:学以致用学以致用正弦函数的图象正弦函数的图象对称轴:对称轴:对称中心:对称中心:六、正弦、余弦函数的对称性六、正弦、余弦函

10、数的对称性余弦函数的图象余弦函数的图象对称轴:对称轴:对称中心:对称中心:六、正弦、余弦函数的对称性六、正弦、余弦函数的对称性x6yo-12345-2-3-41x6o-12345-2-3-41yy=sinx的图象对称轴为:的图象对称轴为:y=sinx的图象对称中心为:的图象对称中心为:y=cosx的图象对称轴为:的图象对称轴为:y=cosx的图象对称中心为:的图象对称中心为:任意两相邻对称轴任意两相邻对称轴(或对称中心或对称中心)的间距为半个周期;的间距为半个周期;对称轴与其相邻的对称中心的间距为四分之一个周期对称轴与其相邻的对称中心的间距为四分之一个周期.为函数为函数 的一条对称轴的是的一条

11、对称轴的是()解:经验证,当解:经验证,当时时为对称轴为对称轴练习练习函数函数y=sinxy=cosx图形图形定义域定义域值域值域最值最值单调性单调性奇偶性奇偶性周期周期对称性对称性1-1时,时,时,时,时,时,时,时,增函数增函数减函数减函数增函数增函数减函数减函数1-1对称轴对称轴:对称中心对称中心:对称轴对称轴:对称中心对称中心:奇函数奇函数偶函数偶函数求求 函数的对称轴和对称中心函数的对称轴和对称中心解解(1)令)令则则的对称轴为的对称轴为解得:对称轴为解得:对称轴为的对称中心为的对称中心为对称中心为对称中心为练习练习练习练习求求 函数的对称轴和对称中心函数的对称轴和对称中心正弦函数、

12、余弦函数的性质正弦函数、余弦函数的性质习题课习题课6 3/2一、基础题型A奇函数 B偶函数C非奇非偶函数 D以上都不对答案B3函数ysin(2x)为偶函数,00,当cosx1,即x2k(kZ)时,y取最大值为ab;当cosx1,即x2k(kZ)时,y取最小值为ab.若a0,当cosx1,即x2k(kZ)时,yminab;当cosx1,即x2k(kZ)时,ymaxab.分析根据函数奇偶性定义进行判断,先检查定义域是否关于原点为对称区间,如果是,再验证f(x)是否等于f(x)或f(x),进而判断函数的奇偶性;如果不是,则该函数必为非奇非偶函数辨析解答忽视了以下内容:三角形中的最小角的范围不是090

13、,而是060,又三角形是不等边三角形,故00与b0讨论归纳:归纳:解题中应注意三角函数的有界性解题中应注意三角函数的有界性对函数值的影响对函数值的影响变形变形1:1:分类讨论法分类讨论法变形变形2:2:已知关于已知关于x x的方程的方程2sin2sin2 2x-cosx+2m=0 x-cosx+2m=0有解有解,求求m m的取值范围的取值范围.法法1:1:分离参数法分离参数法答案D答案C答案B4sin1、sin1、sin的大小顺序是()Asin1sin1sin Bsin1sinsin1Csinsin1sin1 Dsin1sin1sin答案B解析1弧度57.3,y sinx在(0,90)上 是

14、增 函 数,且11,sin1sinsin1.5下列函数中,奇函数的个数为()yx2sinx;ysinx,x0,2;ysinx,x,;yxcosx.A1个B2个C3个D4个答案C解析ysinx,x0,2的定义域不关于原点对称,不是奇函数,、符合奇函数的概念6y2sinx2的值域是()A2,2 B0,2C2,0 DR答案A解析x20,sinx21,1,y2sinx22,28函数yasinxb的最大值为1,最小值为7,则a_,b_.答案433、求下列函数的值域、求下列函数的值域正弦函数、余弦函数的图象都有无穷多条对称轴,其相邻两条对称轴间距离为半个周期,其对称轴一定经过图象的最高点或最低点解答三角函

15、数的单调性问题一定要注意复合函数的单调性法则,更要注意函数的定义域 求函数yAsin(x)或yAcos(x)的单调区间时,0时,先利用诱导公式把x的系数化为正数,然后把x看作一个整体t,考虑函数yAsint(或yAsint)的单调区间利用复合函数单调性判定方法,构造不等式解之课堂小结课堂小结:5、对称性:、对称性:y=sinx的图象对称轴为:的图象对称轴为:对称中心为:对称中心为:y=cosx的图象对称轴为:的图象对称轴为:对称中心为:对称中心为:任意两相邻对称轴任意两相邻对称轴(或对称中心或对称中心)的间距为半个周期;的间距为半个周期;对称轴与其相邻的对称中心的间距为四分之一个周期对称轴与其

16、相邻的对称中心的间距为四分之一个周期.函数函数y=sinxy=cosx图形图形定义域定义域值域值域最值最值单调性单调性奇偶性奇偶性周期周期对称性对称性1-1时,时,时,时,时,时,时,时,增函数增函数减函数减函数增函数增函数减函数减函数1-1对称轴对称轴:对称中心对称中心:对称轴对称轴:对称中心对称中心:奇函数奇函数偶函数偶函数 奇偶性奇偶性 单调性(单调区间)单调性(单调区间)奇函数奇函数偶函数偶函数 +2k,+2k,k Z单调递增单调递增 +2k,+2k,k Z单调递减单调递减 +2k,2k,k Z单调递增单调递增2k,2k +,k Z单调递减单调递减函数函数余弦函数余弦函数正弦函数正弦函数2、定义域、定义域3、值域、值域1、周期性、周期性R-1,1 T=2 正弦、余弦函数的性质:正弦、余弦函数的性质:4、奇偶性与单调性:、奇偶性与单调性:课堂小结课堂小结:

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服