1、5.3,平面向量数量积,1/64,基础知识自主学习,课时训练,题型分类深度剖析,内容索引,2/64,基础知识自主学习,3/64,1.,向量夹角,知识梳理,AOB,0,,,4/64,2.,平面向量数量积,定义,设两个非零向量a,b夹角为,则数量 叫做a与b数量积,记作ab,投影,_叫做向量a在b方向上投影,,_叫做向量b在a方向上投影,几何,意义,数量积ab等于a长度|a|与b在a方向上投影_乘积,|,a,|,b,|cos,|,a,|cos,|,b,|cos,|,b,|cos,5/64,3.,平面向量数量积性质,设,a,,,b,都是非零向量,,e,是单位向量,,为,a,与,b,(,或,e,),夹
2、角,.,则,(1),e,a,a,e,|,a,|cos,.,(2),a,b,.,(3),当,a,与,b,同向时,,a,b,|,a,|,b,|,;,当,a,与,b,反向时,,a,b,|,a,|,b,|.,尤其地,,a,a,_,或,|,a,|,.,(4)cos,(5)|,a,b,|,.,a,b,0,|,a,|,2,|,a,|,b,|,6/64,4.,平面向量数量积满足运算律,(1),ab,;,(2)(,a,),b,(,为实数,),;,(3)(,a,b,),c,.,ba,(,ab,),a,(,b,),ac,bc,7/64,5.,平面向量数量积相关性质坐标表示,设向量,a,(,x,1,,,y,1,),,
3、b,(,x,2,,,y,2,),,则,ab,,由此得到,(1),若,a,(,x,,,y,),,则,|,a,|,2,或,|,a,|,_.,(2),设,A,(,x,1,,,y,1,),,,B,(,x,2,,,y,2,),,则,A,,,B,两点间距离,AB,_.,(3),设两个非零向量,a,,,b,,,a,(,x,1,,,y,1,),,,b,(,x,2,,,y,2,),,则,a,b,.,(4),若,a,,,b,都是非零向量,,是,a,与,b,夹角,则,cos,.,x,1,x,2,y,1,y,2,0,x,1,x,2,y,1,y,2,x,2,y,2,8/64,1.,两个向量,a,,,b,夹角为锐角,a
4、b,0,且,a,,,b,不共线;,两个向量,a,,,b,夹角为钝角,ab,0,且,a,,,b,不共线,.,2.,平面向量数量积运算惯用公式,(1)(,a,b,)(,a,b,),a,2,b,2,.,(2)(,a,b,),2,a,2,2,ab,b,2,.,(3)(,a,b,),2,a,2,2,ab,b,2,.,知识拓展,9/64,判断以下结论是否正确,(,请在括号中打,“”,或,“”,),(1),向量在另一个向量方向上投影为数量,而不是向量,.(,),(2),两个向量数量积是一个实数,向量加、减、数乘运算运算结果是向量,.(,),(3),由,a,b,0,可得,a,0,或,b,0,.(,),(4)(
5、a,b,),c,a,(,b,c,).(,),思索辨析,10/64,考点自测,1.(,教材改编,),已知向量,a,(2,,,1),,,b,(,1,,,k,),,,a,(2,a,b,),0,,则,k,等于,A.,12 B.6,C.,6 D.12,2,a,b,(4,,,2),(,1,,,k,),(5,,,2,k,),,,由,a,(2,a,b,),0,,得,(2,,,1)(5,,,2,k,),0,,,10,2,k,0,,解得,k,12.,答案,解析,11/64,答案,解析,12/64,答案,解析,故平行四边形对角线垂直,,所以该四边形一定是菱形,故选,C.,13/64,答案,解析,14/64,题型分
6、类深度剖析,15/64,题型一平面向量数量积运算,答案,解析,16/64,因为,ABC,是边长为,1,等边三角形,,17/64,1,1,答案,解析,18/64,方法一以射线,AB,,,AD,为,x,轴,,y,轴正方向建立平面直角坐标系,,则,A,(0,,,0),,,B,(1,,,0),,,C,(1,,,1),,,D,(0,,,1),,,19/64,方法二由图知,,20/64,平面向量数量积三种运算方法,(1),当已知向量模和夹角时,可利用定义法求解,即,ab,|,a,|,b,|cos,a,,,b,.,(2),当已知向量坐标时,可利用坐标法求解,即若,a,(,x,1,,,y,1,),,,b,(,
7、x,2,,,y,2,),,则,ab,x,1,x,2,y,1,y,2,.,(3),利用数量积几何意义求解,.,思维升华,21/64,答案,解析,又,0,ABC,180,,,ABC,30.,22/64,答案,解析,23/64,在等腰梯形,ABCD,中,,AB,DC,,,AB,2,,,BC,1,,,ABC,60,,,24/64,题型二平面向量数量积应用,命题点,1,求向量模,答案,解析,2,25/64,26/64,答案,解析,27/64,知,(,x,3),2,y,2,1,,即动点,D,轨迹为以点,C,为圆心单位圆,.,28/64,答案,解析,29/64,因为,a,2,(3,e,1,2,e,2,),2
8、9,2,3,2,1,2,cos,4,9,,,所以,|,a,|,3,,,因为,b,2,(3,e,1,e,2,),2,9,2,3,1,1,2,cos,1,8,,,30/64,(2),若向量,a,(,k,,,3),,,b,(1,,,4),,,c,(2,,,1),,已知,2,a,3,b,与,c,夹角为钝角,则,k,取值范围是,_.,答案,解析,31/64,2,a,3,b,与,c,夹角为钝角,,(2,a,3,b,),c,0,,,即,(2,k,3,,,6)(2,,,1),0,,,4,k,6,6,0,,,k,3.,又若,(2,a,3,b,),c,,则,2,k,3,12,,,即,2,a,3,b,与,c,反向
9、32/64,平面向量数量积求解问题策略,(1),求两向量夹角:,cos,要注意,0,,,.,(2),两向量垂直应用:两非零向量垂直充要条件是,a,b,ab,0,|,a,b,|,|,a,b,|.,(3),求向量模:利用数量积求解长度问题处理方法有,思维升华,33/64,9,答案,解析,34/64,答案,解析,得,2,2,ab,2(1,2,ab,1),,,35/64,答案,解析,36/64,题型三平面向量与三角函数,解答,所以,sin,x,cos,x,,所以,tan,x,1.,37/64,解答,38/64,平面向量与三角函数综合问题解题思绪,(1),题目条件给出向量坐标中含有三角函数形式,利
10、用向量共线或垂直或等式成立等,得到三角函数关系式,然后求解,.,(2),给出用三角函数表示向量坐标,要求是向量模或者其它向量表示形式,解题思绪是经过向量运算,利用三角函数在定义域内有界性,求得值域等,.,思维升华,39/64,答案,解析,由题意知,6sin,2,cos,(5sin,4cos,),0,,,即,6sin,2,5sin,cos,4cos,2,0,,,上述等式两边同时除以,cos,2,,得,6tan,2,5tan,4,0,,,40/64,1,由题意得,,|,a,|,1,,又,OAB,是以,O,为直角顶点等腰直角三角形,,所以,|,a,b,|,2,|,a,|,2,|,b,|,2,2,,,
11、答案,解析,41/64,利用数量积求向量夹角,现场纠错系列,5,错解展示,现场纠错,纠错心得,利用数量积符号判断两向量夹角范围时,不要忽略两向量共线情况,.,42/64,解,错解中,,cos,0,包含了,,,返回,43/64,课时训练,44/64,1.(,北师大附中模拟,),已知向量,a,(,x,1,,,2),,,b,(2,,,1),,则,a,b,充要条件是,答案,1,2,3,4,5,6,7,8,9,10,11,12,13,45/64,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,13,46/64,答案,解析,3.(,山西四校联考,),已知平面向量,a,,,b,满足,a,(
12、a,b,),3,,且,|,a,|,2,,,|,b,|,1,,则向量,a,与,b,夹角正弦值为,a,(,a,b,),a,2,a,b,2,2,2,1,cos,a,,,b,4,2cos,a,,,b,3,,,又,a,,,b,0,,,,,1,2,3,4,5,6,7,8,9,10,11,12,13,47/64,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,13,48/64,又,E,,,F,为,BC,边三等分点,,1,2,3,4,5,6,7,8,9,10,11,12,13,49/64,答案,解析,所以,ABC,是等腰三角形,故选,C.,1,2,3,4,5,6,7,8,9,10,11,1
13、2,13,50/64,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,13,51/64,如图所表示,取,BC,中点,D,,连接,AD,,,OD,,,1,2,3,4,5,6,7,8,9,10,11,12,13,52/64,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,13,53/64,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,13,54/64,1,2,3,4,5,6,7,8,9,10,11,12,13,55/64,答案,解析,4,由题意可建立如图所表示坐标系,可得,A,(2,,,0),,,B,(0,,,2),,,P,(1,,,1),,
14、C,(0,,,0),,,1,2,3,4,5,6,7,8,9,10,11,12,13,56/64,答案,解析,13,1,2,3,4,5,6,7,8,9,10,11,12,13,57/64,1,2,3,4,5,6,7,8,9,10,11,12,13,58/64,解答,因为,0,A,,,1,2,3,4,5,6,7,8,9,10,11,12,13,59/64,解答,解得,c,1,,,1,2,3,4,5,6,7,8,9,10,11,12,13,60/64,解答,所以,sin,C,cos,C,,,1,2,3,4,5,6,7,8,9,10,11,12,13,61/64,解答,由余弦定理,c,2,a,2,b,2,2,ab,cos,C,,,1,2,3,4,5,6,7,8,9,10,11,12,13,62/64,解答,5,64,(,n,8),2,t,2,5,t,2,,得,t,8.,当,t,8,时,,n,24,;当,t,8,时,,n,8,,,1,2,3,4,5,6,7,8,9,10,11,12,13,63/64,解答,1,2,3,4,5,6,7,8,9,10,11,12,13,64/64,






