ImageVerifierCode 换一换
格式:PPT , 页数:52 ,大小:650.04KB ,
资源ID:12555964      下载积分:14 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/12555964.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(中考名家讲座第讲中考数学考纲分析.ppt)为本站上传会员【a199****6536】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

中考名家讲座第讲中考数学考纲分析.ppt

1、单击此处编辑母版文本样式,第二级,第三级,第四级,*,单击此处编辑母版标题样式,*,*,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,*,中考名家讲座第讲中考数学考纲分析,中考名家讲座第讲中考数学考纲分析中考名家讲座第讲中考数学考纲分析 用时不在多,用心则灵;,做题不在多,有法则灵。,用时不在多,用心则灵;,做题不在多,有法则灵。,题目数量:2228个不等,题目考查:,填空题、选择题、解答题,证明题、探究题、操作题,如何进行中考备考?,解题规律:,做一题 会一法 通一类,中考命题趋势分析,1.从

2、命题基本思想看变化,命题的基本思想应该是:实现最大区分度的考试;考查学生应知必会的知识;以能力立意设计命题;考查学生的实践与创新能力;考查学生应用知识的能力以及解决问题的能力等 *,试题的命制要遵循新课标的理念,体现确立新课标的初衷:即改变课程过于注重知识传授的倾向;改变课程结构过于强调学科本位、科目过多和缺乏整合的现状;改变课程内容“难繁偏旧”和过于注重书本知识的现状;改变课程实施过于强调接受学习、死记硬背、机械训练的现状,2.从命题呈现形式看变化,学习性命题;,实践性命题;,探索性命题;,操作性命题,新题型,(1)学习性命题,学习性命题也叫阅读类命题,即在考试的现场让学生先通过阅读学习,理

3、解解决问题的方法,再解决一个类似的数学问题,这类命题反映了对中考考试的一种新的认识,即“考试也是一种学习方式”,*,学习性命题的表现形式有:,先阅读后应用;,先阅读后模仿;,先阅读后探究等,阅读:我们知道,在数轴上,表示一个点而在平面直角坐标系中,表示一条直线;我们还知道,以二元一次方方程 的所有解为坐标的点组成的图形就是一次函次,的图象,它也是一条直线,,如图1可以得出:直线 与直线,的交点P的坐标是(1,3),则方程组 的解是,在直角坐标系中,表示一个平面区域,即直线 以及它左侧的部分,如图2;也表示一个平面区域,即直线 以及它上方的部分,如图3,回答下列问题:在直角坐标系中,,(1)用作

4、图的方法求出方程组,的解,(2)用阴影表示 ,所围成的区域,分析:这是一道典型的先学习后应用型考题。解题策略理解、套用。,解:(1)如图4,在坐标图中分别作出直线 和直线 ,这两条直线的交点P的坐标是(-2,6),则方程组,的解是 ,(2)不等式组 ,在坐标,系中的区域为图4中的阴影部分,【点评】本题从知识方面考查了学生对数轴、平面直角坐标系、二元一次方程的解、一元一次不等式组的解集、用函数观点看二元一次方程组、用函数观点看一元一次不等式组等知识的掌握程度;从能力水平方面考查学生研究性学习与探究能力,考查学生阅读能力和分析、解决问题的能力,即自学能力;考查学生应用数学模型解决问题的能力。,(2

5、实践性命题,在新课标的理念中,关注学生的实践能力的培养与提升是一个较为核心的理念正因为如此,实践性命题应运而生,(2)实践性命题分类,先作图后应用;,先作图后判断;,先作图后探究等.,【例题】将抛物线c1:沿x轴翻折,得抛物线c2,如图所示.,(1)请直接写出抛物线c2的表达式.,解:,(2)现将抛物线c1向左平移m个单位长度,平移后得到的新抛物线的顶点为M,与x轴的交点从左到右依次为A,B;将抛物线c2也向右平移m个单位长度,平移后得到的新抛物线的顶点为N,与x轴交点从左到右依次为D,E.,当B,D是线段AE的三等分点时,求m的值;,在平移过程中,是否存在以点A,N,,E,M为顶点的四边形

6、是矩形的情形?,若存在,请求出此时m的值;,若不存在,请说明理由.,(2)令 得:,则抛物线c1与x轴的两个交点坐标为(-1,0),(1,0).,A(-1-m,0),B(1-m,0).,同理可得:D(-1+m,0),E(1+m,0).,当 时,如图,,当 时,如图,m=2,当 或 时,B,D是线段AE的三等分点.,方法一:理由:连接AN、NE、EM、,MA.,依题意可得:.,即M,N关于原点O对称,OM=ON.,A(-1-m,0),E(1+m,0),,A,E关于原点O对称,,OA=OB,四边形ANEM为平行四边形.,要使平行四边形ANEM为矩形,须满足OM=OA,即 ,,m=1.,当m=1时,

7、以点A,N,E,M为顶点的四边形是矩形.,方法二:理由:连接AN、NE、EM、MA.,依题意可得:.,即M,N关于原点O对称,OM=ON.,A(-1-m,0),E(1+m,0),A,E关于原点O对称,OA=OE,,四边形ANEM为平行四边形.,若,则,m=1.此时AME是直角三角形,且AME=90.,当m=1时,以点A,N,E,M为顶点的四边形是矩形.,【点评】本题从知识方面考查了学生对点的坐标、对称点的坐标特点、坐标系中两点间的距离计算、勾股定理的逆定理、二次函数的图象和性质、平行四边形的判定、矩形的判定、图形变换等知识的掌握程度;从能力水平方面考查学生动手操作能力和探究能力,考查学生分析问

8、题、解决问题的能力以及图形变换的思想。,(3)探究性命题,在新课标中突出了对探究能力的要求,从探究的意义上讲,它含有过程性与对问题终结性的要求各地的中考试题中这样的问题很多,大致分为:对实际问题的探究、问题结论的探究、解决方法的探究、对问题成立条件的探究等 *,【例题】已知抛物线与y轴交于点A(0,3),与x轴分别交于B(1,0)、C(5,0)两点,(1)求此抛物线的解析式;,(2)若点D为线段OA的一个三等分点,求直线DC的解析式;,(3)若一个动点P自OA的中点M出发,先到达x轴上的某点(设为点E),再到达抛物线的对称轴上某点(设为点F),最后运动到点A,求使点P运动的总路径最短的点E、点

9、F的坐标,并求出这个最短总路径的长,解析:,(1)根据题意,得,解得,所以抛物线的解析式为,(2)由题意可知OA的三等分点分别为,(0,1),(0,2).,设直线CD的解析式为,当点D的坐标为(0,1)时,,直线CD的解析式为,当点D的坐标为(0,2)时,,直线CD的解析式为,(3)如图,由题意,可得M ,点M关于x轴的对称点为M ,点A关于抛物线对称轴x=3的对称点为A(6,3),连接A M,交x轴于点E,交抛物线的对称轴x=3于点F.根据轴对称的性质可知,EM=E M,FA=F A.,因此,线段A M 的长就是所求点P运动的最短总路径长,由A、M 的坐标可以求得直线A M 的解析式为,把

10、代入 并解得 ;,把 代入 并解得 。,连接A A,求得线段A M=.,因此,E(0,2),F ;,最短总路径的长是 .,【点评】本题从知识方面考查了学生对点的坐标表示、等分点的定义、对称点坐标的确定、用待定系数法确定直线解析式和抛物线解析式、二元一次方程组的解法、线段性质和轴对称图形的性质等知识的掌握程度;从能力水平方面考查学生分析问题、解决问题和应用知识的能力,考查学生构建数学模型(小马喝水或吃草)解决问题的能力。,(4)操作性命题,这一类命题是新课标实施以来出现的新题型,它体现了“做数学”的理念.问题呈现形式用什么工具做;怎样做;结果情况分析等,【例题】,如图,的三条中线分别为AD、BE

11、CF,(1)在图中利用图形变换画出并指明以AD、BE、CF的长度为三边长的一个三角形(保留画图痕迹);,(2)若 的面积为1,则以AD、BE、CF的长度为三边长的三角形的面积等于_,分析:这是一道典型的通过作图方可求解的操作性问题。,要求我们在图中利用图形变换画出以,的三条中线AD、BE、CF的长度为三边长的三角形.,图形变换包括平移、旋转和轴对称,根据图形,特点和要求,可以选用平移变换求解。,过点C作CG/AD,使CG=AD.连接FG,,只要证明FG=BE即可。,(1)连接AG,EG,EF,因为,CG/AD,CG=AD,,四边形ADCG是平行四边形,,AG/DC,且AG=DC.,又由E、F

12、是三角形两边的中点知EF是该三角形的中位线,,EF/BC,EF=BC.即EF/DC,EF=DC.,AG/EF,AG=EF.,四边形FEGA是平行四边形,,AF/GE,且AF=GE,又因为AF=BF,BF/GE,BF=GE.,四边形BEGF是平行四边形。,FG=BE.所以 就是所求。,(2)由题意知 的面积就是所求。,【点评】本题从知识方面考查了学生对三角形中线、三角形中位线的性质、平行四边形判定与性质、全等三角形判定与性质、三角形面积、面积公理等知识的掌握程度;从能力水平方面考查学生分析问题、解决问题的能力以及图形变换的思想;考查学生应用图形的割补及面积公理求多边形的面积的能力。,同学们应掌握:,基本知识、基本方法的同时,关注中考试题的特点和变化。,【本讲小节】,需掌握的数学思想:,方程思想、,转化思想、,数形结合思想、,分类讨论思想等。,需掌握的数学方法有:,消元法、配方法、换元法、降,次法、观察法、特值法、面积法、待定系数法等。,需强化的数学能力有:,基本运算能力、推理能力、抽象思维能力、空间想象能力、概括能力和建立数学模型的能力等。,祝同学们学习愉快,,取得优异成绩!,再见!,谢谢大家!,结 语,

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服