ImageVerifierCode 换一换
格式:PPT , 页数:45 ,大小:650.50KB ,
资源ID:12534144      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/12534144.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(高考数学第一轮总复习经典实用 2-5函数的奇偶性与周期性学案课件-2.ppt)为本站上传会员【pc****0】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高考数学第一轮总复习经典实用 2-5函数的奇偶性与周期性学案课件-2.ppt

1、基础知识,一、函数的奇偶性,1,一般地,对于函数,f,(,x,),,如果对于定义域内每一个,x,,都有,f,(,x,),,那么函数,f,(,x,),就叫奇函数;都有,f,(,x,),,函数,f,(,x,),叫偶函数,奇偶函数的定义域是,(,大前提,),f,(,x,),f,(,x,),关于原点对称的,2,函数可分为,(,按奇偶性,),:,、,、,、,任何一个定义域对称的非奇非偶函数都可写成一个奇函数与一个偶函数的和,即,f,(,x,),奇函数,偶函数,既奇,且偶函数,非奇非偶函数,3,基本性质:在公共定义域上,两函数有:奇,奇,,偶,偶,,奇,奇,,偶,偶,,奇,奇,,偶,偶,(,分母不为零,

2、),奇函数的反函数是,,若奇函数的定义域包含,0,时,则,.,4,图象特征:奇函数图象关于,对称;偶函数图象关于,对称;反之亦然,奇,偶,偶,偶,偶,偶,奇函数,f,(0),0,原点,y,轴,5,判定方法:首先看函数的,,若对称,再看:,f,(,x,),是奇函数,f,(,x,),f,(,x,),f,(,x,),图象,对称;,f,(,x,),是偶函数,f,(,x,),f,(,x,),f,(,x,),f,(,x,),f,(|,x,|),图象关于,对称,定义域是否关于原点,对称,f,(,x,),0,1(,f,(,x,)0),关于原点,f,(,x,),0,1(,f,(,x,)0),f,(,x,),y,

3、轴,6,推广:,y,f,(,a,x,),是偶函数,f,(,a,x,),f,(,x,),f,(,x,),关于,对称;类似地,,f,(,a,x,),f,(,b,x,),f,(,x,),关于,x,对称,y,f,(,b,x,),是奇函数,f,(,b,x,),f,(,x,),关于,成中心对称图形;类似地,,f,(,a,x,),f,(,b,x,),f,(,x,),关于,(,,,0),中心对称,f,(,a,x,),f,(2,a,x,),x,a,f,(,b,x,),(,b,0),7,一些重要类型的奇偶函数:,函数,f,(,x,),a,x,a,x,为,函数,函数,f,(,x,),a,x,a,x,为,函数;,函数

4、f,(,x,),(,a,0,且,a,1),为,函数;,函数,f,(,x,),log,a,为,函数;,函数,f,(,x,),log,a,(,x,),为,函数,奇,奇,奇,奇,偶,二、函数的周期性,1,对于函数,f,(,x,),,如果存在一个,常数,T,,使得当,x,取定义域内的,值时,都有,,那么函数,f,(,x,),叫做周期函数,非零常数,T,叫,f,(,x,),的,如果所有的周期中存在一个,,那么这个,就叫,f,(,x,),的最小正周期,2,周期函数,有最小正周期,若,T,0,是,f,(,x,),的周期,则,kT,(,k,Z,,,k,0),也一定是,f,(,x,),的周期,周期函数的定义域

5、无,界,非零,每一个,f,(,x,T,),f,(,x,),周期,最小的正数,最小正数,不一定,上、下,3,设,a,为非零常数,若对,f,(,x,),定义域内的任意,x,,恒有下列条件之一成立:,f,(,x,a,),f,(,x,),;,f,(,x,a,),;,f,(,x,a,),;,f,(,x,a,),;,f,(,x,a,),;,f,(,x,a,),f,(,x,a,),,则,f,(,x,),是,函数,,是它的一个周期,(,上述式子分母不为零,),周期,2,a,若,f(x,),同时关于,x,a,与,x,b,对称,(a0),,则,f,(),_.,解析:,f,(),f,(,),又,f,(,),f,(,

6、T,),f,(),故,f,(),0.,答案:,0,5,(2009,重庆,,12),若,f,(,x,),a,是奇函数,则,a,_.,解析:,f,(,x,),为奇函数,,f,(,x,),f,(,x,),,,答案:,【,例,1,】,判断下列函数的奇偶性,命题意图,本题主要考查对函数奇偶性定义的理解,解答,(1),由,0,,得定义域为,1,1),,不关于原点对称,故,f,(,x,),为非奇非偶函数,(3),当,x,0,,则,f,(,x,),(,x,),2,(,x,),x,2,x,f,(,x,),当,x,0,时,,x,1,,,f,(3),a,,则,(,),A,a,3,C,a,1,解析,f,(,x,5),

7、f,(,x,),,,f,(3),f,(,2,5),f,(,2),,又,f,(,x,),为奇函数,,f,(,2),f,(2),,又,f,(2)1,,,a,1,,选择,C.,答案,C,设,f,(,x,),是定义在,R,上的奇函数,且,y,f,(,x,),的图象关于直线,x,对称,则,f,(1),f,(2),f,(3),f,(4),f,(5),_.,解析:,f,(,x,),在,R,上为奇函数,,f,(,x,),f,(,x,),,且有,f,(0),0.,又,y,f,(,x,),的图象关于,x,对称,,f,(,x,),f,(,x,),,,f,(1,x,),f,(,x,),f,(,x,),f,(,x,),

8、f,(,x,),f,(2,x,),f,(1,x,),f,(2,x,),f,(,x,),函数的周期为,2,,且,f,(1),0.,f,(1),f,(2),f,(3),f,(4),f,(5),f,(1),f,(0),f,(1),f,(0),f,(1),0.,答案:,0,总结评述:,本题考查函数的奇偶性、对称性、周期性等函数性质,.,【,例,3,】,(2009,朝阳模拟,),已知函数,f,(,x,),是定义域为,R,的奇函数,且它的图象关于直线,x,1,对称,(1),求,f,(0),的值;,(2),证明函数,f,(,x,),是周期函数;,(3),若,f,(,x,),x,(0,x,1),,求,x,R,

9、时,函数,f,(,x,),的解析式,并画出满足条件的函数,f,(,x,),至少一个周期的图象,解析,(1),因为函数,f,(,x,),是奇函数,所以,f,(,x,),f,(,x,),,又,f,(,x,),的定义域为,R,,令,x,0,,则,f,(,0),f,(0),,所以,f,(0),0.,(2),证明:因为函数,f,(,x,),是奇函数,所以,f,(,x,),f,(,x,),又,f,(,x,),关于直线,x,1,对称,所以,f,(,x,),f,(2,x,),,,即,f,(,x,2),f,(,x,),所以,f,(,x,4),f,(,x,2),2,f,(,x,2),f,(,x,),f,(,x,)

10、所以,f,(,x,),是以,4,为周期的周期函数,.,(3),解:设,1,x,0,,则,0,x,1,,所以,f,(,x,),x,,又,f,(,x,),f,(,x,),,,所以当,1,x,0,时,,f,(,x,),x,,即,f,(,x,),x,.,又因为,f,(0),0,,,所以当,1,x,1,时,,f,(,x,),x,.,当,1,x,3,时,,3,x,1,,则,12,x,1,,,所以,f,(2,x,),2,x,,而,f,(,x,),关于直线,x,1,对称,,所以,f,(2,x,),f,(,x,),,所以,f,(,x,),2,x,(1,x,3),,,则,f,(,x,),则,f,(,x,),总结

11、提示,(1),若奇函数,f,(,x,),在,x,0,处有定义,则,f,(0),0.(2),若函数,f,(,x,),对定义域内的任意,x,都有,f,(,a,x,),f,(,a,x,),,则函数,f,(,x,),的图象关于直线,x,a,对称,反之也成立,函数,f,(,x,),的定义域为,D,x,|,x,0,,且满足对于任意,x,1,、,x,2,D,,有,f,(,x,1,x,2,),f,(,x,1,),f,(,x,2,),(1),求,f,(1),的值;,(2),判断,f,(,x,),的奇偶性并证明;,(3),如果,f,(4),1,,,f,(3,x,1),f,(2,x,6),3,,且,f,(,x,),

12、在,(0,,,),上是增函数,求,x,的取值范围,解:,(1),令,x,1,x,2,1,,有,f,(1,1),f,(1),f,(1),,解得,f,(1),0.,(2),令,x,1,x,2,1,,有,f,(,1),(,1),f,(,1),f,(,1),解得,f,(,1),0.,令,x,1,1,,,x,2,x,,有,f,(,x,),f,(,1),f,(,x,),,,f,(,x,),f,(,x,),f,(,x,),为偶函数,(3),f,(4,4),f,(4),f,(4),2,,,f,(16,4),f,(16),f,(4),3.,又,f,(3,x,1),f,(2,x,6),3,即,f,(3,x,1)(

13、2,x,6),f,(64),(*),f,(,x,),在,(0,,,),上是增函数,,(*),等价不等式组,或,即 或,3,x,5,或,总结评述:,这种利用函数满足某一等式,判断其奇偶性问题,主要是利用取特殊值法,如本题中可令,x,1,1,,,x,2,x,,使式子中出现,f,(,x,),与,f,(,x,),,然后再一步步地考虑还需求,f,(,1),,,f,(1),,仍然用取特殊值法求解抽象函数不等式,主要是利用函数的单调性再结合函数其他性质脱去符号,“,f,”,1,奇偶性是函数在定义域上的整体性质,因此讨论函数奇偶性首先要看其定义域函数具有奇偶性的必要条件是其定义域关于原点对称,一个函数是奇,(,偶,),函数的充要条件是其函数图象关于原点,(,y,轴,),对称,2,奇偶性定义是判断函数奇偶性的主要方法之一,为了便于判断,有时需要将函数进行化简,或应用定义的变形式:,f,(,x,),f,(,x,),3,解题中要注意以下性质的灵活运用:,(1),f,(,x,),为偶函数,f,(,x,),f,(|,x,|),;,(2),若奇函数,f,(,x,),在,x,0,处有定义,则,f,(0),0.,4,函数周期性问题应牢牢把握周期函数的定义,并掌握一些常见的确定函数周期的条件,请同学们认真完成课后强化作业,

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服