ImageVerifierCode 换一换
格式:PPT , 页数:36 ,大小:1.70MB ,
资源ID:12469741      下载积分:12 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/12469741.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(数列极限部分.ppt)为本站上传会员【精****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

数列极限部分.ppt

1、数学竞赛强化讲义,极限与连续,杨建新,数列极限部分,1)设,求,证明:先证明,是递增数列.事实上,假设,成立,则,因此,是递增数列.,用归纳法证明,于是,是有界数列.,显然成立.而,成立.,设,成立,则,因此,,成立.,由单调有界定理,收敛,设,在,两边取极限,得,解得,或,但由于,于是,数列的敛散性,若收敛则求出极限.,2)设数列,由,和,给出,讨论,证明,于是,若,成立,则,极限值为,单调减少,单调增加.,于是,用归纳法可以验证,因此数列是有界的.,3)设,求,证明:显然,首先证明,.,若假设,则,根据归纳法可得,成立.,又由,即,是递增数列且有上界,由单调有界定理知,收敛,,设,在,两边

2、取极限,得,得,解得,或,但由于,因此,从而,证明:注意两个事实:1),单调递增趋于e,单调递减趋于e。,2),4)设,求证:,存在。,有不等式,故,单调下降,且,于是,存在。,注记:,其中,是欧拉常数。,更一般的情形,设,单调递减且,,求证:,存在。,证明:,故,单调下降。而,于是,存在。,2 利用夹逼准则,定理 如果,及,满足下列条件:,(1),,使得,(2),则,的极限存在,且,5)验证,证明 由于,于是,因此,即,利用夹逼准则,于是,若函数,在区间,上连,续,则该函数在区间,上必可积,3 利用定积分,此时极限,存在且与区间,的分法及,的取法无关,,将区间,进行n等分,则,取区间,的右端

3、点:,可用定积分来计算数列的和式极限问题,若函数,在区间,上连续,并有,则,6)求,解:,取 连续函数,满足,7)设,求,解:令,则,故,8)求极限,解:,4 利用微分近似公式,9)设,存在,定义数列,求,利用此结果求极限,解,于是,因此,若令,则,若令,则,5 利用Taylor公式,10)试求,的值,解 利用Taylor公式可得,其中,于是,.其中,为整数,11)设a,1,a,2,是两个不同的实数,用归纳法定义,求数列a,n,的极限.,解:由于,令,则,是公比为,的等比数列.,则,于是,12)设数列,由,给出,求证,证明:显然,是单调减少且趋于0的,而,于是,于是,于是,即,但是,而,于是,

4、因此,设,的极限为0,,可以证明,的极限为0.,13)求最小的,和最大的,使对所有正整数n都有,解:令,则,可证明,时,于是,于是最大的,而最小的,6 施笃兹(stolz)定理.,设 1),(n=1,2,),2),3),则,注2:(,型stolz定理),设对一切充分大的n,,严格递减,且,若,存在,则,也存在,且,14)设,证明,证明:因,故利用Stolz公式,,得,15)设,证明,证明:显然,是单调增加的,又可证明,事实上若,有极限,则,矛盾,因此,又令,由施笃兹(stolz)定理可得.,而,于是,因此,16)求 极限,解,而,于是,17)设,求,解:,则数列有下界,,又,故数列单调减少,易得,18)设数列,满足,请问,收敛吗?,若收敛,求,;若发散,说明理由.,解:,则,单减有下界,根据单调有界定理知,收敛,,令,在,两边取极限得,,于是有,由于,于是,故,,从而,收敛.,而,19)证明:数列,收敛,并求其极限。,证明:设该数列通项为,,则,令,则,由拉格朗日中值定理存在,介于,之间,使得,由题意得,令,则,由,且,由夹逼定理得,即,同理可得,所以,,20)设,证明:,存在,并求此极限值。,证明:令x=1得:,于是,即,因此,单调递减且有下界,,存在,设,对,两边同时取极限得,解得,

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服