ImageVerifierCode 换一换
格式:DOC , 页数:12 ,大小:41.50KB ,
资源ID:1242405      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/1242405.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(高等数学(B)(1)作业1.doc)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高等数学(B)(1)作业1.doc

1、高等数学(B)(1)作业1初等数学知识一、名词解释:邻域设 是两个实数,且 ,满足不等式 的实数 的全体,称为点 的 邻域。绝对值数轴上表示数 的点到原点之间的距离称为数 的绝对值。记为 。区间数轴上的一段实数。分为开区间、闭区间、半开半闭区间、无穷区间。数轴规定了原点、正方向和长度单位的直线。实数有理数和无理数统称为实数。二、填空题1绝对值的性质有 、 、 、 、 、 。2开区间的表示有 、 。3闭区间的表示有 、 。4无穷大的记号为 。5 表示全体实数,或记为 。6 表示小于 的实数,或记为 。7 表示大于 的实数,或记为 。8去心邻域是指 的全体。用数轴表示即为9.MANZU 9满足不等

2、式 的数 用区间可表示为 。三、回答题1答:(1)发展符号意识,实现从具体数学的运算到抽象符号运算的转变。(2)培养严密的思维能力,实现从具体描述到严格证明的转变。(3)培养抽象思维能力,实现从具体数学到概念化数学的转变。(4)树立发展变化意识,实现从常量数学到变量数学的转变。2答:包括整数与分数。3答:不对,可能有无理数。4答:等价于 。5答: 。四、计算题 1解: 。2解: 。3解: 为方程的解。函 数(P3)一、名词解释函数设x与y是两个变量,若当x在可以取值的范围D内任意取一个数值时,变量y通过某一法则 f,总有唯一确定的值与之对应,则称变量y是变量x的函数。其中D叫做函数的定义域,f

3、称为对应法则,集合G=y|y=f(x),x 叫做函数的值域。奇函数若函数 的定义域关于原点对称,若对于任意的 ,恒有为奇函数。偶函数若函数 的定义域关于原点对称,若对于任意的 ,恒有,则称函数 为偶函数。定义域自变量的取值范围,记作 。值域所有函数值组成的集合,记作G=y|y=f(x),x 。初等数学包括几何与代数,基本上是常量的数学。三角函数:称 为三角函数。指数函数称函数 为指数函数。复合函数设 若 的值域包含在 的定义域中,则 通过 构成 的函数,记作 ,称其为复合函数, 称为中间变量。对数函数称函数 为对数函数。反函数若函数 的值域为 ,若 ,都有一个确定的且满足 的 值与之对应。则由

4、此得到一个定义在 上的以 为自变量、 为因变量的新函数,称它为 的反函数,记作 。幂函数称函数 ( 为实数)为幂函数。常函数称函数 为常函数。常量在某一变化过程中,始终保持不变的量。变量在某一变化过程中,可以取不同数值的量。二、填空题1函数概念最早是由莱布尼兹引进的。有了函数概念,人们就可以从数量上描述运动。2在历史上第一个给出函数一般定义的是狄里克雷,并给出了一个不能画出图形的函数。这就是著名的狄里克雷函数,其表达式是 。3函数的三种表示法:解析法、图像法、列表法。4函数表达了因变量与自变量之间的一种对应规则。5单值函数是当自变量在定义域中取定了一数值时,与之对应的函数值是唯一的函数。6奇函

5、数的图像特点是关于原点对称,偶函数的图像特点是关于y轴对称。7单调函数的图像特点是总是上升或总是下降。8反函数的图像特点是关于直线y=x对称。三、回答题1答:设函数 在集合 上有定义,如果存在一个正数 ,对所有的 ,恒有 ,则称函数 为有界函数。2答:(1)当一个函数 在区间 有界时,正数 的取法不是唯一的。(2)有界性是依赖于区间的。3答: ,则称函数 在区间 单调增加。否则,称为单调减少。4答:若函数 在区间 单调,其值域是 ,则函数 存在反函数 其定义域是 ,值域是 。四、作图题(1) 解:是抛物线。(2) 解:是立方抛物线。(3) 解:是正弦曲线。(4) 解:是余弦曲线。(5) 解:是

6、正切曲线。(6) 解:是半抛物线。(7) 解:是自然对数函数。(8) 解:是指数函数(a1)。(9) 解:是对数函数(a1)。(10) 解:是对数函数(a1)。(11) 解:是指数函数(a1)。第(1)题图 第(2)题图 第(3)题图第(4)题图 第(5)题图 第(6)题图第(7)题图 第(8)题图 第(9)题图第(10)题图 第(11)题图 第(12)题图五、计算题(1)解: 。(2)解:设长为 ,宽为 ,则 ,面积 。(3)解: ,所以定义域为 。(4)解: , , 。(5)解:由 解得 ,交换 和 ,得到 的反函数 ,由 ,故定义域为 。(6)解:复合函数为 六、讨论题答:(1)复合函数

7、是函数之间的一种运算;(2)并不是任何两个函数都能构成一个复合函数;(3)复合函数可以是由多个(大于两个)函数复合而成;(4) 中,后者的值域正好是前者的定义域;(5)构成复合函数的各简单函数,除了最后一个外,都是基本初等函数。极 限(P9)一、名词解释极 限一个数列或函数其变化趋势的终极状态。无穷小量极限为零的变量或者常数0。连 续设函数 在 及其一个邻域内有定义,且等式 成立,则称函数 在 连续。数列极限对数列 来说,若 时, ,则称数列 的极限为 记作 。函数极限设函数 在 的附近有定义,当 时, ,则称函数 在 时的极限为A ,记作 无穷大量若 ,则称 为该极限过程下的无穷大量。二、填

8、空题1从极限产生的历史背景来看,极限概念产生于解决微积分的基本问题:求面积,体积,弧长,瞬时速度以及曲线在一点的切线问题。2极限概念描述的是变量在某一变化过程中的终极状态。3在中国古代,极限概念已经产生,我国春秋战国时期的庄子天下篇中说:“一尺之棰,日取其半,万世不竭”,就是极限的朴素思想。4公元3世纪,中国数学家刘徽的割圆术,就用圆内接正多边形周长去逼近圆周长这一极限思想来近似地计算圆周率 的。5极限概念产生于求面积求切线两个实际问题。三、回答题1简述连续性概念。答:设函数 在 及其一个邻域内有定义,且等式 成立,则称函数 在 连续。 在(a,b)内连续是指函数 在(a,b)内的每个点处均连

9、续。2间断点分成几类?答: 3什么是单侧连续?答:设函数 在 及其右邻域内有定义,且等式 成立,则称函数 在 右连续。同理可定义左连续。4什么是连续函数?答:若函数 在(a,b)内的每个点处均连续,且在左端点处右连续,右端点处左连续,则称函数 在a,b上连续。5简述复合函数的连续性定理。答:设函数 在点 处连续,函数 在点 处连续,而 ,并设 在点 的某一邻域内有定义,则复合函数 在点 处连续。四、论述题极限思想的辩证意义是什么?答:极限概念描述的是变量在某一变化过程中的终极状态,是一个无限逼近的过程,是一个客观上存在但又永远达不到的数。在解决实际问题时,“无限”的过程标志着可以得到精确的答案

10、,他是为解决实际问题的需要而产生的,反过来又成为解决实际问题的有力工具。五、计算题(1)解: (2)解: (3)解: (4)解: 六、讨论解: , 函数在x=0处极限不存在。高等数学(B)(1)作业2导 数一、名词解释导数设函数 在 及其邻域内有定义,若 存在,则称此极限值为函数 在 点处的导数值。记为, 等。平均变化率称 为平均变化率。瞬时变化率称 为瞬时变化率。导函数对于区间(a,b)内的每一点x都有导数值,这样由这些导数值构成的函数称为 的导函数。高阶导数二阶及二阶以上的导数。驻点使得 的点。极值设函数 在 及其邻域内有定义,且在 的邻域内 恒成立,则称 为极大值点,称 为极大值。同理可

11、定义极小值。极大值与极小值统称为函数的极值。二、填空题1 导数的物理意义是瞬时速度。2 导数的几何意义是曲线在一点处切线的些率。3 导数的第三种解释是变化率。4 导数是一种特殊的极限,因而它遵循极限运算的法则。5 可导的函数是连续的,但是连续函数不一定可导。三、回答题1 什么是费马定理?答:设函数 在 的某邻域 内有定义,并且在 处可导,如果对任意的 ,有 (或 ),那么 。2 什么是罗尔定理?答:设函数 在闭区间a,b上连续,在开区间(a,b)内可导,并且满足 ,那么至少存在一点 ,使得 。3 什么是拉格朗日定理?它的辅助函数是怎样构成的?答:设函数 在闭区间a,b上连续,在开区间(a,b)

12、内可导,那么至少存在一点 ,使得 。辅助函数为: 。4 函数的性质有哪些?答:函数的性质有:有界性,奇偶性,周期性,单调性。5 导数的绝对值大小告诉我们什么?它反映在函数曲线上情况又怎样?答:导数绝对值大小反映曲线的陡峭程度,导数的绝对值越大,则曲线越陡峭,否则,曲线越平缓。6 什么是极大值(或极小值)?答:设函数 在 及其邻域内有定义,且在 的邻域内 恒成立,则称 为极大值点,称 为极大值。设函数 在 及其邻域内有定义,且在 的邻域内 恒成立,则称 为极小值点,称 为极小值。7 请举例说明费马定理只给出了极值的必要条件而不是充分条件。答:例如:直线y=c(c为常数),在任意一点都满足费马定理

13、的条件,且导数值都是0,但是在任意一点处都不是极值点。8 最大值与极大值是一回事吗?答:不是一回事。连续函数在某个闭区间上可能有多个极大值和极小值,但是最大值和最小值却各有一个。9 求最大值或最小值通常要经过哪几个步骤?答:(1)找出驻点和那些连续但不可导的点来,并计算出这些点的函数值;(2)计算出比区间端点处的函数值;(3)将以上个函数值进行比较,可得到最大值与最小值。(4)如果是应用问题,则需先分析题意,设变量,列出函数关系,在求出唯一驻点,它就是答案。四、计算题1 解: 2 解: 。3 解: 4 解: 5 解: 6 解: 7 解:当 时, 当 时, 综上所述, 8 解: 9 解: 10

14、解: 五、应用题1 解: , 当 时, , ,答:体积V增加的速率为400 cm/s.2. 解:设一边长为x,则另一边长为1-x,矩形面积S=x(1-x)= , , 令 ,解得 。答:从中间截断,可得到最大矩形的面积。2 解:设宽为 米,则长为 米,围墙长度为 。,令 ,即 ,解得 x舍掉 , 512/x答:当宽为16米,长为32米时,才能使材料最省。微 分(P17)一、名词解释微分设函数 处的微分,记作 函数的一阶微分形式的不变性无论 是自变量也好,还是中间变量也好, 总是成立的。微分的线性化由 知, ,其中 为线性主部,也就是微分。二、填空题1微分有双重意义,一是表示微小的量,二是表示一种

15、与求导密切相关的运算。2微分学包括两个系统:概念系统与算法系统。3 导数是逐点定义的,它研究的是函数在一点附近的性质。4微分中值定理建立了函数的局部性质和整体性质的联系,建立了微积分理论联系实际的桥梁。三、回答题1微分学基本问题是什么?答:求非均匀变化量的变化率问题。2微分学的基本运算是什么?答:求导运算和求微分的运算。3微分的线性化有什么应用?答:可进行近似计算等。四、计算题1 (1)解: (2)解: (3)解: (4)解: , 2 解: cm3 解:设 则 ,五、证明题证明:令 ,则 ,证毕。高等数学(B)(1)作业3不定积分一、名词解释原函数如果函数 定义在同一区间 ,并且处处有: ,则

16、称 是 的一个原函数。不定积分若 是 的一个原函数,则称 为 的不定积分。记作 .不定积分几何意义表示形状完全一样只是位置不同的一族曲线。二、填空题1 在数学中必须考虑的运算有两类:正运算与逆运算。2对应于加法运算的逆运算是减法,对应于乘法运算的逆运算是除法,对应于正整数次乘方运算的逆运算是开方,对应于微分运算的逆运算是积分。3关于逆运算我们至少有两条经验:一是逆运算一般说比正运算困难,二是逆运算常常引出新结果。如减法引出负数,除法引出有理数,正数开方引出无理数,负数开方引出虚数。三、回答题1什么叫函数f(x)在区间(a,b)的原函数?有多少个?它们彼此之间有什么关系?答:若 ,则称 是 的一

17、个原函数,有无穷多个,彼此之间相差一个常数。2 什么叫函数f(x)在区间(a,b)的不定积分?答:函数f(x)的原函数的全体,称为函数f(x)的不定积分。3 两个函数的不定积分相等是什么意思?答:这两个函数相等。4 说明数学运算中存在的正运算与逆运算。答:减法是加法的逆运算;除法是乘法的逆运算;开方是乘方的逆运算;不定积分是微分的逆运算;等等。5说明原函数和不定积分的关系。答:原函数的全体就是不定积分。四、计算题1求下列函数的原函数(1)解:因为 , 所以该函数的原函数为 (2)解: (3)解: ,(4)解: (5)解: ,(6)解: (7)解: (8)解: (9)解: (10)解: 2求下列

18、各不定积分(1)解: (2)解: (3)解: (4)解: (5)解: (6)解: (7)解: (8)解 = 定 积 分(P26)一、名词解释定积分设函数 在区间 内插入 个分点: ,把区间 分成 个小区间 ,其长度为 ,其中 0,1,2,3, ,在每个小区间 上任取一点 : ,并作乘积 ,再求出部分和 ,令 ,若 ( 为常数),则称 为函数 的定积分,记作 定积分几何意义若函数 ,则定积分 表示由曲线 、直线 轴所围的曲边梯形的面积。定积分中值定理设函数 则在 ,使得 。微积分基本定理设函数 则 = ,这里 牛顿莱布尼兹公式即微积分基本定理中的公式。二、填空题1定积分是对连续变化过程总效果的度

19、量,求曲边形区域的面积是定积分概念的最直接的起源。2积分学的基本问题是非均匀变化量的求积问题。它的数学模型是 ,它的物理原形是求变速运动的路程,它的几何原形是求曲边梯形的面积。3微分学的基本问题是求非均匀变化量的变化率问题,它的数学模型是 ,它的物理原形是求瞬时速度,它的几何原形是求切线斜率,它的基本运算是求导运算和求微分的运算。4微分学研究的是函数的局部性态,无论是微分概念,还是微商概念,都是逐点给出的。数学家研究函数的局部性质,其目的在于以局部定整体。5积分学包括不定积分和定积分两大部分,不定积分的目的是提供积分方法。三、回答题1定积分有哪些应用?答:物理学应用,几何学应用等。例如,路程问

20、题,曲边梯形面积问题等。2定积分的性质有哪些?答:由以下9条:(1) ;(2) ;(3) ;(4) ;(5) ;(6) ;(7)若在 ;(8)设 ,则: ;(9)设函数 则在 ,使得 。3简述积分区间上限为变量时定积分定理。答:设函数 则 上可导,且 。4建立定积分步骤有哪些?答:分为4步:(1)分割;(2)作积 ;(3)作和 ;(4)取极限 ,其中 。四、计算题1利用定积分性质,比较下列积分值大小。(1)解: , (2)解: , (3)解: , 2求函数 的平均值。解:平均值A= .3设 解: , 。4设 ,求 。解: = 。5计算下列定积分(1) 解: (2) 解: (3) 解: (4)

21、解: (5) 解: (6) 解: 6解:如下图, 体积V= 第6题图 第7题图 第8题图 第9题图7解:如上图,体积 8解:如上图, ,面积 9解:如上图,面积 高等数学(B)(1)作业4微积分简史注意:以下六题自己从书中相应位置的内容去概括,要抓住重点,言简意赅,写满所留的空地。1论述微分学的早期史。答:见书P2162172简述费马对微分学的贡献。答:见书P2172183简述巴罗对微分学的贡献。答:见书P2182204论述积分学的早期史。答:见书P2062105论述微积分对人类历史的贡献。答:见书“一、前言”一开始的部分(前两段)。6牛顿和莱布尼兹对微积分的发现做出了什么贡献?答:见书P22

22、2225。微分方程(P33)一、回答题1微分方程的定义。答:含有未知函数的导数或微分的方程。2何为微分方程的通解、特解、初始条件?答:满足微分方程的所有函数,叫做微分方程的通解;满足微分方程的一个解或者部分解,称为微分方程的特解。微分方程最初所满足的条件,叫做初始条件。3何为变量可分离的微分方程?答:把形如 的微分方程,称为微分方程。4微分方程与建模有和关系。答:抛弃具体意义,只关心微分方程的形状,研究如何解方程,等这些工作做熟练了,反过来又可以用它解决实际问题。5建模思想和步骤是什么?答:建模思想就是将各种各样的实际问题化为数学问题,通过建立数学模型,最终使实际问题得到解决。步骤:(1)明确

23、实际问题,并熟悉问题的背景;(2)形成数学模型;(3)求解数学问题;(4)研究算法,并尽量使用计算机;(5)回到实际中去,解释结果。二、计算题1求下列微分方程的解。(1)解: ,代入初始条件得 ,满足初始条件的特解为 (2)解: 代入初始条件得 , 满足初始条件的特解为 (3)解: ,代入初始条件得 ,满足初始条件的特解为 2解:由题意: , ,代入初始条件得 , 3解:由题意: , 代入初始条件得 , 所求的函数关系是 4解:由题意: ,分离变量: 两边积分: ,代入初始条件 得: ,这时: ,代入初始条件 得: ,代入 得,化简得: ,所以镭的量R与时间t的函数关系为 高等数学(B)(1)

24、综合练习一、名词解释1函数设x与y是两个变量,若当x在可以取值的范围D内任意取一个数值时,变量y通过某一法则 f,总有唯一确定的值与之对应,则称变量y是变量x的函数。其中D叫做函数的定义域,f称为对应法则,集合G=y|y=f(x),x 叫做函数的值域。2. 奇函数若函数 的定义域关于原点对称,若对于任意的 ,恒有 为奇函数。3连续设函数 在 及其一个邻域内有定义,且等式 成立,则称函数 在 连续。 在(a,b)内连续是指函数 在(a,b)内的每个点处均连续。4定积分设函数 在区间 内插入 个分点: ,把区间 分成 个小区间 ,其长度为 ,其中 0,1,2,3, ,在每个小区间 上任取一点 :

25、,并作乘积 ,再求出部分和 ,令 ,若 ( 为常数),则称 为函数 的定积分,记作 5 微分方程含有未知函数的导数或微分的方程。二、填空题1 函数 的反函数是( );2 若函数 内可导且单调增加,则 ,有;3 ;4若 ,则 ;5若函数 的一阶导数为零,则在该点取得极值且为(a+b+c);三、判断题1 若f(x)在(a,b)内严格单调,则f(x)在(a,b)内存在反函数;( )2 若f(x)与g(x)在 都是偶函数,则f(x)g(x)在实数范围内也是偶函数。( )3 若数列 单调增加,则数列 存在极限;( )4 若函数f(x)在点a可导,则函数f(x)在点a连续;( )5 函数f(x)在(a,b

26、)内的极大值必定大于它在该区间内的极小值。( )四、单选题1 函数 内( D )。A没有极大值点; B. 没有极小值点;C既没有极大值点也没有极小值点 D . 既有极大值点也有极小值点2设函数 连续,则 等于( A )A ; B. ;C ; D. .3下列函数中,( C )为复合函数。A ; B. ;C ; D. .4设函数 在点 处可导,则 ( B )。A与 ,h都有关; B. 仅与 有关,而与h无关;C仅与h有关,而与 无关; D. 与 ,h都无关。5若在区间a,b上f(x)0,在(a,b)内 ,根据定积分的几何意义,则 ( A )。A大于 ; B. 小于 ;C等于 ; D. 大于 .五、计算题1求函数 的定义域。解:由题意知 , 函数的定义域为 .2 用导数定义求函数 在点 的导数。解: 3求 的近似值。解:令 ,取 , ,则由近似公式: ,4设函数 ,求其原函数。解: 所以原函数为: 5求不定积分 解:令 ,则 , ,如下图。六、论述题试简要论述微积分产生的历史背景。答:见书P205。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服