ImageVerifierCode 换一换
格式:DOC , 页数:16 ,大小:1.78MB ,
资源ID:1227006      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/1227006.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【1587****927】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【1587****927】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(人教版高中数学必修2立体几何题型归类总结.doc)为本站上传会员【1587****927】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

人教版高中数学必修2立体几何题型归类总结.doc

1、立体几何题型归类总结一、考点分析基本图形1棱柱有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。四棱柱 底面为平行四边形 平行六面体 侧棱垂直于底面 直平行六面体 底面为矩形 长方体 底面为正方形 正四棱柱 侧棱与底面边长相等 正方体2. 棱锥棱锥有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。 正棱锥如果有一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫做正棱锥。3球球的性质:球心与截面圆心的连线垂直于截面;(其中,球心到截面的距离为d、球的半径为R、截面的半径为r)球与多

2、面体的组合体:球与正四面体,球与长方体,球与正方体等的内接与外切.注:球的有关问题转化为圆的问题解决.球面积、体积公式:(其中R为球的半径)平行垂直基础知识网络平行关系平面几何知识线线平行线面平行面面平行垂直关系平面几何知识线线垂直线面垂直面面垂直判定性质判定推论性质判定判定性质判定面面垂直定义1.2.3.4.5.平行与垂直关系可互相转化异面直线所成的角,线面角,二面角的求法1求异面直线所成的角:解题步骤:一找(作):利用平移法找出异面直线所成的角;(1)可固定一条直线平移另一条与其相交;(2)可将两条一面直线同时平移至某一特殊位置。常用中位线平移法 二证:证明所找(作)的角就是异面直线所成的

3、角(或其补角)。常需要证明线线平行;三计算:通过解三角形,求出异面直线所成的角;2求直线与平面所成的角:关键找“两足”:垂足与斜足解题步骤:一找:找(作)出斜线与其在平面内的射影的夹角(注意三垂线定理的应用);二证:证明所找(作)的角就是直线与平面所成的角(或其补角)(常需证明线面垂直);三计算:常通过解直角三角形,求出线面角。3求二面角的平面角解题步骤:一找:根据二面角的平面角的定义,找(作)出二面角的平面角; 二证:证明所找(作)的平面角就是二面角的平面角(常用定义法,三垂线法,垂面法);三计算:通过解三角形,求出二面角的平面角。二、典型例题考点一:三视图2 2 侧(左)视图 2 2 2

4、正(主)视图 1一空间几何体的三视图如图1所示,则该几何体的体积为_.俯视图 第1题2.若某空间几何体的三视图如图2所示,则该几何体的体积是_.第2题 第3题3一个几何体的三视图如图3所示,则这个几何体的体积为 .4若某几何体的三视图(单位:cm)如图4所示,则此几何体的体积是 .3正视图俯视图112左视图a 第4题 第5题5如图5是一个几何体的三视图,若它的体积是,则 .6已知某个几何体的三视图如图6,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是 .2020正视图20侧视图101020俯视图 7.若某几何体的三视图(单位:)如图所示,则此几何体的体积是 8.设某几何体的三视图如图

5、8(尺寸的长度单位为m),则该几何体的体积为_m3。 俯视图正(主)视图侧(左)视图2322第7题 第8题9一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的侧面积为_.图910.一个三棱柱的底面是正三角形,侧棱垂直于底面,它的三视图及其尺寸如图10所示(单位cm),则该三棱柱的表面积为_.正视图俯视图 图1011. 如图11所示,一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的全面积为_. 图图11 图12 图1312. 如图12,一个空间几何体的主视图和左视图都是边长为1的正三角形,俯视图是一个圆,那么几何体的

6、侧面积为_. 13.已知某几何体的俯视图是如图13所示的边长为的正方形,主视图与左视图是边长为的正三角形,则其表面积是_.14.如果一个几何体的三视图如图14所示(单位长度: ), 则此几何体的表面积是_.图1415一个棱锥的三视图如图图9-3-7,则该棱锥的全面积(单位:)_. 正视图 左视图 俯视图图1516图16是一个几何体的三视图,根据图中数据,可得该几何体的表面积是_.俯视图正(主)视图侧(左)视图2322图16 图1717.如图17,一个空间几何体的主视图、左视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为1,那么这个几何体的体积为_.18.若一个底面为正三角形、侧棱

7、与底面垂直的棱柱的三视图如图9-3-14所示,则这个棱柱的体积为_.图18考点二 体积、表面积、距离、角注:1-6体积表面积 7-11 异面直线所成角 12-15线面角1. 将一个边长为a的正方体,切成27个全等的小正方体,则表面积增加了_.2. 在正方体的八个顶点中,有四个恰好是正四面体的顶点,则正方体的表面积与此正四面体的表面积的比值为_.3设正六棱锥的底面边长为1,侧棱长为,那么它的体积为_.4正棱锥的高和底面边长都缩小原来的,则它的体积是原来的_.5已知圆锥的母线长为8,底面周长为6,则它的体积是 .6.平行六面体的体积为30,则四面体的体积等于 .7如图7,在正方体中,分别是,中点,

8、求异面直线与所成角的角_.8. 如图8所示,已知正四棱锥SABCD侧棱长为,底面边长为,E是SA的中点,则异面直线BE与SC所成角的大小为_. 第8题 第7题9.正方体中,异面直线和所成的角的度数是_. 10如图9-1-3,在长方体中,已知,则异面直线与所成的角是_,异面直线与所成的角的度数是_ 图13 11. 如图9-1-4,在空间四边形中, ,分别是AB、CD的中点,则 与所成角的大小为_.12. 正方体中,与平面所成的角为 .13如图13在正三棱柱中,则直线与平面所成角的正弦值为_.14. 如图9-3-6,在正方体ABCDA1B1C1D1中,对角线BD1与平面ABCD所成的角的正切值为_

9、.A1CBAB1C1D1DO 图9-3-6 图9-3-1 图715如图9-3-1,已知为等腰直角三角形,为空间一点,且,的中点为,则与平面所成的角为 16如图7,正方体ABCDA1B1C1D1的棱长为1,O是底面A1B1C1D1的中心,则O到平面AB C1D1的距离为_.17.一平面截一球得到直径是6cm的圆面,球心到这个平面的距离是4cm,则该球的体积是_.18长方体的8个顶点在同一个球面上,且AB=2,AD=, ,则顶点A、B间的球面距离是_.19.已知点在同一个球面上,若,则两点间的球面距离是 .20. 在正方体ABCDA1B1C1D1中,M为DD1的中点,O为底面ABCD的中心,P为棱

10、A1B1上任意一点,则直线OP与直线AM所成的角是_.21ABC的顶点B在平面a内, A、C在a的同一侧,AB、BC与a所成的角分别是30和45,若AB=3,BC= ,AC=5,则AC与a所成的角为_.22矩形ABCD中,AB=4,BC=3,沿AC将矩形ABCD折成一个直二面角BACD,则四面体ABCD的外接球的体积为_.23已知点在同一个球面上,若,则两点间的球面距离是 .24正三棱锥的一个侧面的面积与底面积之比为23,则这个三棱锥的侧面和底面所成二面角的度数为_ .25.已知是球表面上的点,则球表面积等于_.26已知正方体的八个顶点都在球面上,且球的体积为,则正方体的棱长为_.27. 一个

11、四面体的所有棱长都为,四个顶点在同一球面上,则此球的表面积为_.考点四 平行与垂直的证明1. 正方体,E为棱的中点() 求证:;() 求证:平面;()求三棱锥的体积2.已知正方体,是底对角线的交点.求证:() C1O面;(2)面3如图,矩形所在平面,、分别是和的中点.()求证:平面;()求证:;()若,求证:平面.4. 如图(1),ABCD为非直角梯形,点E,F分别为上下底AB,CD上的动点,且。现将梯形AEFD沿EF折起,得到图(2)(1)若折起后形成的空间图形满足,求证:;EBCFDA图(2)(2)若折起后形成的空间图形满足四点共面,求证:平面;ABCDEF图(1)AFEBCDMN5如图,

12、在五面体ABCDEF中,FA 平面ABCD, AD/BC/FE,ABAD,M为EC的中点,N为AE的中点,AF=AB=BC=FE=AD(I) 证明平面AMD平面CDE;(II) 证明平面CDE;PDABCOM6在四棱锥PABCD中,侧面PCD是正三角形,且与底面ABCD垂直,已知菱形ABCD中ADC60,M是PA的中点,O是DC中点.(1)求证:OM / 平面PCB;(2)求证:PACD;(3)求证:平面PAB平面COM.7如图,在四棱锥PABCD中,底面ABCD是正方形,侧棱PD底面ABCD,PD=DC,E是PC的中点,作EFPB交PB于点F.(1)证明PA/平面EDB;(2)证明PB平面E

13、FD8.正四棱柱ABCD-A1B1C1D1的底面边长是,侧棱长是3,点E,F分别在BB1,DD1上,且AEA1B,AFA1D(1)求证:A1C面AEF;(2)求二面角A-EF-B的大小;(3)点B1到面AEF的距离.考点五 异面直线所成的角,线面角,二面角1. 如图,四棱锥PABCD的底面ABCD为正方形,PD底面ABCD,PD=AD.求证:(1)平面PAC平面PBD;(2)求PC与平面PBD所成的角;2.如图所示,已知正四棱锥SABCD侧棱长为,底面边长为,E是SA的中点,则异面直线BE与SC所成角的大小为 _.3正六棱柱ABCDEFA1B1C1D1E1F1底面边长为1,侧棱长为,则这个棱柱

14、的侧面对角线E1D与BC1所成的角是_.4. 若正四棱锥的底面边长为2cm,体积为4cm3,则它的侧面与底面所成的二面角的大小是_.5. 如图,在底面为平行四边形的四棱锥PABCD中,平面ABCD,且PAAB,点E是PD的中点.(1)求证:;(2)求证:平面AEC;(3)若,求三棱锥EACD的体积;(4)求二面角EACD的大小. 考点六 线面、面面关系判断题1已知直线l、m、平面、,且l,m,给出下列四个命题:(1),则lm(2)若lm,则(3)若,则lm(4)若lm,则其中正确的是_.2. 是空间两条不同直线,是空间两条不同平面,下面有四个命题: 其中真命题的编号是_(写出所有真命题的编号)。3. 为一条直线,为三个互不重合的平面,给出下面三个命题:;其中正确的命题有_.4. 对于平面和共面的直线、 (1)若则(2)若则(3)若则 (4)若、与所成的角相等,则其中真命题的序号是_.5. 关于直线m、n与平面与,有下列四个命题:若且,则; 若且,则;若且,则; 若且,则;其中真命题的序号是_.6. 已知两条直线,两个平面,给出下面四个命题: 其中正确命题的序号是_.7.给出下列四个命题, 其中假命题的个数是_. 垂直于同一直线的两条直线互相平行; 垂直于同一平面的两个平面互相平行.若直线与同一平面所成的角相等,则互相平行.若直线是异面直线,则与都相交的两条直线是异面直线. 16

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服