1、专题8:导数(文)经典例题剖析考点一:求导公式。例1. 是的导函数,则的值是 。 解析:,所以 答案:3 考点二:导数的几何意义。例2. 已知函数的图象在点处的切线方程是,则 。 解析:因为,所以,由切线过点,可得点M的纵坐标为,所以,所以答案:3例3.曲线在点处的切线方程是 。解析:,点处切线的斜率为,所以设切线方程为,将点带入切线方程可得,所以,过曲线上点处的切线方程为:答案: 点评:以上两小题均是对导数的几何意义的考查。考点三:导数的几何意义的应用。例4.已知曲线C:,直线,且直线与曲线C相切于点,求直线的方程及切点坐标。解析:直线过原点,则。由点在曲线C上,则,。又,在处曲线C的切线斜
2、率为,整理得:,解得:或(舍),此时,。所以,直线的方程为,切点坐标是。答案:直线的方程为,切点坐标是 点评:本小题考查导数几何意义的应用。解决此类问题时应注意“切点既在曲线上又在切线上”这个条件的应用。函数在某点可导是相应曲线上过该点存在切线的充分条件,而不是必要条件。考点四:函数的单调性。例5.已知在R上是减函数,求的取值范围。解析:函数的导数为。对于都有时,为减函数。由可得,解得。所以,当时,函数对为减函数。(1) 当时,。由函数在R上的单调性,可知当是,函数对为减函数。(2) 当时,函数在R上存在增区间。所以,当时,函数在R上不是单调递减函数。综合(1)(2)(3)可知。答案: 点评:
3、本题考查导数在函数单调性中的应用。对于高次函数单调性问题,要有求导意识。考点五:函数的极值。例6. 设函数在及时取得极值。(1)求a、b的值;(2)若对于任意的,都有成立,求c的取值范围。解析:(1),因为函数在及取得极值,则有,即,解得,。(2)由()可知,。当时,;当时,;当时,。所以,当时,取得极大值,又,。则当时,的最大值为。因为对于任意的,有恒成立,所以,解得或,因此的取值范围为。答案:(1),;(2)。 点评:本题考查利用导数求函数的极值。求可导函数的极值步骤:求导数;求的根;将的根在数轴上标出,得出单调区间,由在各区间上取值的正负可确定并求出函数的极值。考点六:函数的最值。例7.
4、 已知为实数,。求导数;(2)若,求在区间上的最大值和最小值。解析:(1),。(2),。令,即,解得或, 则和在区间上随的变化情况如下表:000增函数极大值减函数极小值增函数0,。所以,在区间上的最大值为,最小值为。答案:(1);(2)最大值为,最小值为。 点评:本题考查可导函数最值的求法。求可导函数在区间上的最值,要先求出函数在区间上的极值,然后与和进行比较,从而得出函数的最大最小值。考点七:导数的综合性问题。例8. 设函数为奇函数,其图象在点处的切线与直线垂直,导函数的最小值为。(1)求,的值;(2)求函数的单调递增区间,并求函数在上的最大值和最小值。解析: (1)为奇函数,即,的最小值为
5、,又直线的斜率为,因此,(2)。,列表如下:增函数极大减函数极小增函数所以函数的单调增区间是和,在上的最大值是,最小值是。答案:(1),;(2)最大值是,最小值是。点评:本题考查函数的奇偶性、单调性、二次函数的最值、导数的应用等基础知识,以及推理能力和运算能力。导数强化训练(一) 选择题1. 已知曲线的一条切线的斜率为,则切点的横坐标为( A )A1B2C3D42. 曲线在点(1,1)处的切线方程为( B )ABCD3. 函数在处的导数等于 ( D )A1B2C3D44. 已知函数的解析式可能为( A )ABCD5. 函数,已知在时取得极值,则=( D )(A)2(B)3(C)4(D)56.
6、函数是减函数的区间为( D )()()()()7. 若函数的图象的顶点在第四象限,则函数的图象是( A )xyoAxyoDxyoCxyoB8. 函数在区间上的最大值是(A)ABCD9. 函数的极大值为,极小值为,则为 ( A )A0 B1 C2D410. 三次函数在内是增函数,则 ( A )A B CD 11. 在函数的图象上,其切线的倾斜角小于的点中,坐标为整数的点的个数是( D )A3B2C1D012. 函数的定义域为开区间,导函数在内的图象如图所示,则函数在开区间内有极小值点(A )A1个 B2个 C3个D 4个(二) 填空题13. 曲线在点处的切线与轴、直线所围成的三角形的面积为_。1
7、4. 已知曲线,则过点“改为在点”的切线方程是_15. 已知是对函数连续进行n次求导,若,对于任意,都有=0,则n的最少值为 。16. 某公司一年购买某种货物400吨,每次都购买吨,运费为4万元次,一年的总存储费用为万元,要使一年的总运费与总存储费用之和最小,则吨(三) 解答题17. 已知函数,当时,取得极大值7;当时,取得极小值求这个极小值及的值18. 已知函数(1)求的单调减区间;(2)若在区间2,2.上的最大值为20,求它在该区间上的最小值.19. 设,点P(,0)是函数的图象的一个公共点,两函数的图象在点P处有相同的切线。(1)用表示;(2)若函数在(1,3)上单调递减,求的取值范围。
8、20. 设函数,已知是奇函数。(1)求、的值。(2)求的单调区间与极值。21. 用长为18 cm的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?22. 已知函数在区间,内各有一个极值点(1)求的最大值;(1) 当时,设函数在点处的切线为,若在点处穿过函数的图象(即动点在点附近沿曲线运动,经过点时,从的一侧进入另一侧),求函数的表达式强化训练答案:1.A 2.B 3.D 4.A 5.D 6.D 7.A 8.A 9.A 10.A 11.D 12.A(四) 填空题13. 14. 15. 7 16. 20(五) 解答题17.
9、 解:。据题意,1,3是方程的两个根,由韦达定理得,极小值极小值为25,。18. 解:(1) 令,解得所以函数的单调递减区间为(2)因为 所以因为在(1,3)上,所以在1,2上单调递增,又由于在2,1上单调递减,因此和分别是在区间上的最大值和最小值.于是有,解得故 因此即函数在区间上的最小值为7.19. 解:(1)因为函数,的图象都过点(,0),所以, 即.因为所以. 又因为,在点(,0)处有相同的切线,所以而将代入上式得 因此故,(2).当时,函数单调递减.由,若;若由题意,函数在(1,3)上单调递减,则所以又当时,函数在(1,3)上单调递减.所以的取值范围为20. 解:(1),。从而是一个
10、奇函数,所以得,由奇函数定义得;(2)由()知,从而,由此可知,和是函数是单调递增区间;是函数是单调递减区间;在时,取得极大值,极大值为,在时,取得极小值,极小值为。21. 解:设长方体的宽为(m),则长为 (m),高为.故长方体的体积为从而令,解得(舍去)或,因此.当时,;当时,故在处取得极大值,并且这个极大值就是的最大值。从而最大体积,此时长方体的长为2 m,高为1.5 m.答:当长方体的长为2 m时,宽为1 m,高为1.5 m时,体积最大,最大体积为。22. 解:(1)因为函数在区间,内分别有一个极值点,所以在,内分别有一个实根,设两实根为(),则,且于是,且当,即,时等号成立故的最大值是16(2)解法一:由知在点处的切线的方程是,即,因为切线在点处空过的图象,所以在两边附近的函数值异号,则不是的极值点而,且若,则和都是的极值点所以,即,又由,得,故解法二:同解法一得因为切线在点处穿过的图象,所以在两边附近的函数值异号,于是存在()当时,当时,;或当时,当时,设,则当时,当时,;或当时,当时,由知是的一个极值点,则,所以,又由,得,故
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100