ImageVerifierCode 换一换
格式:PPT , 页数:29 ,大小:838.50KB ,
资源ID:12231970      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/12231970.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(土木工程专业英语教学.ppt)为本站上传会员【精***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

土木工程专业英语教学.ppt

1、单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,Statically Determinate Structures,Structures are said to be,statically determinate,when the forces and,reactions,produced by a given loading can be calculated using only the equations of equilibrium.,Statically determinate structure,Statically Determinate St

2、ructures,The,simply supported beam,shown in Figure 1.3 is statically determinate.We can solve for the three unknown reactions using the equations of equilibrium and then calculate the,internal forces,such as,bending moment,shear force,and,axial force,at any given location along the length of the bea

3、m.,Statically determinate structure,Statically Indeterminate Structures,Four unknown reactions,Three independent equilibrium equations,Statically Indeterminate Structures,Statically indeterminate beam,Satically indeterminate frame,Satically indeterminate,composite Structures,Force Method 力法,The,forc

4、e method,(also called the flexibility method)is used to calculate internal forces and reactions in statically indeterminate structures due to loads and imposed deformations.,The steps in the force method,This is accomplished by,releasing external support conditions,creating internal,hinges,.,The sys

5、tem thus formed is called the,primary system,.Number the released constraints from 1 to,n,.,primary system,q,q,q,A,A,B,B,C,C,l,l,X,1,X,1,b)基本体系,a)一次超静定结构,3For a given released constraint,j,introduce an unknown,redundant,ri5dQndEnt,force,X,j,corresponding to,the type and direction,of the released con

6、straint.,多余未知力,redundant force,基本体系沿多余未知力方向的位移应与原结构位移相同,F,P,F,P,F,Ax,F,Ay,M,A,X,1,基本体系,A,A,B,B,C,C,q,q,q,A,A,B,B,C,C,l,l,X,1,X,1,X,1,4Apply the given loading or imposed deformation to the primary system.Calculate,displacements,due to the given loading,at each of the released constraints in the prima

7、ry system.These displacements are called,1P,2P,nP,.,.,F,P,A,A,B,B,C,1P,X,1,A,B,X,1,=1,d,11,11,=,d,11,X,1,F,P,A,B,C,EI,l,/2,l,/2,X,1,基本体系,(,1,=,B,=0),=,+,5For a given released constraint,j,apply a,unit load,X,j,=1,to the primary system.Calculate displacements due to,X,j,=1,at each of the released con

8、straints in the primary system.These displacements are called ,,A,B,X,1,=1,d,11,F,P,A,B,C,EI,l,/2,l,/2,X,1,基本体系,(,1,=,B,=0),=,F,P,A,A,B,B,C,1P,X,1,11,=,d,11,X,1,+,unit load,单位力,.,.,6.Solve for redundant forces x,1,through x,n,by imposing the,compatibility conditions,of the original structure.These c

9、onditions transform the,primary system,back to the original structure by finding the combination of redundant forces that make displacement at each of the released constraints equal to zero.,Calculate force,S,at a given location in the structure using,Forcecan be bending moment,shear,axial force,or

10、reaction.,The Classical Displacement Method,The force method:,unknowns are force quantities(the redundant forces),based on geometrical conditions(compatibility conditions at the location of each redundant force).,The classical displacement method,unknowns are displacement quantities,based on statica

11、l conditions(equilibrium conditions).,=,Z,1,R,21,1,2,3,4,1,3,4,P,R,2P,1,2,2,3,4,R,22,R,12,R,11,R,1P,Z,2,The steps in the,classical displacement method,1For a given structure and loading,consider the joints to,be fully fixed,against rotation.,P,L,1,2,3,4,EI=常数,Z,1,Z,2,(a),(b)基本结构,1,2,3,4,=,Z,1,Z,2,R,

12、1,=0,=0,P,R,2,The steps in the,classical displacement method,2Calculate the moments in each member of the structure due to the given loads,R,1P,R,2P,assuming,full fixity,at the joints.These moments are called,fixed-end moments,.,3.Calculate moments,r,11,、r,12,at the ends of each member due to,unit d

13、isplacements,of the joints.,4Express the total moment at each end of a given member as the sum of the,fixed-end moments,M,P,and the product of,unknown joint displacements,z,1,z,2,times the moments,M,1,、M,2,produced by,unit joint displacements Z,1,Z,2,calculated in Step 3.,5Generate an equation of mo

14、ment equilibrium at each joint.,基本结构在荷载等外因和结点位移的共同作用下,每一个附加联系中的附加反力矩或反力都应等于零(静力平衡条件),。,6Solve the system of equations for the,unknown joint displacements.,7Calculate the member end moments using the expressions derived in Step 4 and the values of joint displacements calculated in Step 6.,r,11,Z,1,+r

15、12,Z,2,+R,1P,=0,r,21,Z,1,+r,22,Z,2,+R,2P,=0,r,11,Z,1,+r,12,Z,2,+R,1P,=0,r,21,Z,1,+r,22,Z,2,+R,2P,=0,R,1,=R,11,+R,12,+R,1P,=0,R,2,=R,21,+R,22,+R,2P,=0,8Calculate all remaining forces in the structure(shear forces and axial forces).,Force method,can solve all statically indeterminate structures.,comp

16、utational complexity,prohibitive,for structures with more than three unknown forces.,Classical displacement method,allows a solution based on a member-by-member procedure,rather than one that requires consideration of the structure as a whole;,based on the pre-solution of standard cases of,intermedi

17、ate,媒介物 load and displacement,reduce the number of unknowns in a given solution.,Moment Distribution Method,力矩分配法,The,moment distribution method,is used for statically indeterminate beams and frames by simple hand calculations.,This is basically an iterative,5itErEtiv,迭代的 process.,The procedure invo

18、lves artificially restraining temporarily all the joints against rotation and writing down the,fixed end moments,for all the members.,restrain all the joints against rotation,Write down the,fixed end moments,The joints are then released one by one in succession,sEk5seFEn,连续.At each released joint th

19、e unbalanced moments are distributed to all the ends of the members meeting at that joint.,A certain fraction of these distributed moments are carried over to the far ends of members.The released joint is again restrained temporarily before proceeding to the next joint.,The same set of operations ar

20、e carried out at each joint till all the joints are completed.This completes one cycle of operations.The process is repeated a number of times or cycles till the values obtained are within the desired accuracy.,Member distribution factor,弯矩分配系数,Given a unit moment applied to joint A,what moments are

21、 produced in each of the members?,For a unit rotation the moment in each member at joint A is just its stiffness,Joint stiffness:,Member distribution factor,Distribution factor,of member,i,at joint A:,member distribution factor=,member stiffness/joint stiffness,The center joint is fixed(the rotation

22、 is set to zero)which gives the so called,fixed-end moment,solution for beam on the right and no response in the beam on the left.This solution is valid except that it requires an external moment to be applied to the center joint.The final solution is constructed by releasing or balancing the center joint which is equivalent to applying a clockwsie moment of to this joint.,center joint is fixed,fixed-end moment solution,releasing or balancing the center joint,

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服