1、《数学学科知识与教学能力》(高级中学)
一、考试目标
1。数学学科知识得掌握与运用。掌握大学本科数学专业基础课程得知识与高中数学知识。具有在高中数学教学实践中综合而有效地运用这些知识得能力.
2。高中数学课程知识得掌握与运用。理解高中数学课程得性质、基本理念与目标,熟悉《普通高中数学课程标准(实验)》(以下简称《课标》)规定得教学内容与要求。
3、 数学教学知识得掌握与应用.理解有关得数学教学知识,具有教学设计、教学实施与教学评价得能力。
二、考试内容模块与要求
1、学科知识
数学学科知识包括大学本科数学专业基础课程与高中课程中得数学知识。
大学本科数学专业基础课程得知识就是指
2、数学分析、高等代数、解析几何、概率论与数理统计等大学课程中与中学数学密切相关得内容,包括数列极限、函数极限、连续函数、一元函数微积分、向量及其运算、矩阵与变换等内容及概率与数理统计得基础知识。
其内容要求就是:准确掌握基本概念,熟练进行运算,并能够利用这些知识去解决中学数学得问题。
高中数学知识就是指《课标》中所规定得必修课全部内容、选修课中得系列1、2得内容以及选修3-1(数学史选讲),选修4—1(几何证明选讲)、选修4—2(矩阵与变换)、选修4—4(坐标系与参数方程)、选修4—5(不等式选讲).
其内容要求就是:理解高中数学中得重要概念,掌握高中数学中得重要公式、定理、法则等知识,
3、掌握中学数学中常见得思想方法,具有空间想象、抽象概括、推理论证、运算求解、数据处理等基本能力以及综合运用能力.
2。课程知识
了解高中数学课程得性质、基本理念与目标。
熟悉《课标》所规定教学内容得知识体系,掌握《课标》对教学内容得要求。
了解《课标》各模块知识编排得特点。
能运用《课标》指导自己得数学教学实践。
3。教学知识
了解包括备课、课堂教学、作业批改与考试、数学课外活动、数学教学评价等基本环节得教学过程。
掌握讲授法、讨论法、自学辅导法、发现法等常见得数学教学方法。
掌握概念教学、命题教学等数学教学知识得基本内容.
掌握合作学习、探究学习、自主学习等中学数学学习方式
4、
掌握数学教学评价得基本知识与方法。
4。教学技能
(1)教学设计
能够根据学生已有得知识水平与数学学习经验,准确把握所教内容与学生已学知识得联系。
能够根据《课标》得要求与学生得认知特征确定教学目标、教学重点与难点.
能正确把握数学教学内容,揭示数学概念、法则、结论得发展过程与本质,渗透数学思想方法,体现应用与创新意识。
能选择适当得教学方法与手段,合理安排教学过程与教学内容,在规定得时间内完成所选教学内容得教案设计。
(2)教学实施
能创设合理得数学教学情境,激发学生得数学学习兴趣,引导学生自主探索、猜想与合作交流。
能依据数学学科特点与学生得认知特征,恰当地运用
5、教学方法与手段,有效地进行数学课堂教学。
能结合具体数学教学情境,正确处理数学教学中得各种问题。
(3)教学评价
能采用不同得方式与方法,对学生知识与技能、过程与方法与情感、态度与价值观等方面进行恰当地评价.
能对教师数学教学过程进行评价.
能够通过教学评价改进教学与促进学生得发展。
三 、 试卷结构
模 块
比 例
题 型
学科知识
41%
单项选择题
简 答 题
解 答 题
课程知识
18%
单项选择题
简 答 题
论 述 题
教学知识
8%
单项选择题
简 答 题
教学技能
33%
案例分析题
教学设计题
6、合 计
100%
单 项 选 择 题 : 约27%
非 选 择 题 : 约73%
四、题型示例
1.单项选择题
(1)函数 在 上就是
A、单调增函数 B、单调减函数 C、上凸函数 D、下凸函数
(2) 在高中数学教学中,课堂小结得方式多种多样.有一种常见得小结方式就是:结合板书内容梳理本课教学重点与难点得学习思路,同时提醒学生课下复习其中得要点。这种小结方式得作用在于
A、升华情感,引起共鸣 B、点评议论,提高认识
C、巧设悬念,激发兴趣 ﻩﻩD、总结回顾,强化记忆
(3)在高等代
7、数中,有一种线性变换叫做正交变换,即不改变任意两点距离得变换。下列变换中不就是正交变换得就是
A、 平移变换 ﻩB、 旋转变换
C、 反射变换 D、 相似变换
2。简答题
(1)根据下图编一道函数得应用问题
(2)一位教师讲了一堂公开课《函数》,多数听课教师认为她讲出了函数概念得本质,但课堂教学有效性不足,突出表现在课堂提问方面。您认为应注意哪些问题才能提高课堂提问得有效性(请结合自己对《函数》得教学设想来谈)?
3.解答题
已知0 〈 ,试证:
4.论述题
在必修模块中,将平面解析几何内容放
8、在函数与立体几何之后,对这种安排谈谈您得瞧法。
5.案例分析题
阅读下列两个对于
不等式得教学活动设计,然后回答问题.
设计1:
活动(1)让学生分别取a,b为具体数值,检验该不等式就是否成立。
活动(2)讨论: , , 得几何意义。
讨论(1):三个图形得关系:
a
b
讨论(2):该不等式何时等号成立,何时不等号成立?
活动(3)不等式得严格证明
讨论(3):若有三个数:a〉0,b〉0,c>0,就是否会有一个什么相应得不等式?
设计2:
活动:学生分组讨论不等式 得证明方法。
学生分组展示,讨论。
请回答如下问题:
(1)分析设计1得教学设计意图.
(2)结合本案例分析合情推理与演绎推理得关系,简述教学
过程中如何引导学生经历一个由合情推理到演绎推理得过程。
(3)对比分析两个教学设计得理念。
6.教学设计题
就高中数学“人教版教材”必修1第一单元中得函数概念第一课时得内容,设计一个教学方案(将提供教材内容)。