ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:95KB ,
资源ID:12026174      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/12026174.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(图形的全等全章标准检测卷.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

图形的全等全章标准检测卷.doc

1、第24章 图形的全等全章标准检测卷 一、选择题:(每题2分,共24分) 1.下列判断正确的是( ) A.有两边和其中一边的对角对应相等的两个三角形全等 B.有两边对应相等,且有一角为30°的两个等腰三角形全等 C.有一角和一边对应相等的两个直角三角形全等 D.有两角和一角的对边对应相等的两个三角形全等 2.如图1所示,△ABC与△BDE都是等边三角形,ABCD C.AE

2、如图2所示,在等边△ABC中,D、E、F,分别为AB、BC、CA上一点(不是中点),且AD=BE=CF,图中全等的三角形组数为( ) A.3组 B.4组 C.5组 D.6组 4.如图3所示,D为△ABC的边AB的中点,过D作DE∥BC交AC于E,点F在BC上, 使△DEF和△DEA全等,这样的F点的个数有( ) A.4个 B.3个 C.2个 D.1个 5.下列命题错误的是( ) A.矩形是平行四边形; B.相似三角形一定是全等三角形 C.等腰梯形的对角线相等 D.两直线平行,同位角相等

3、6.下列命题中,真命题是( ) A.对角线相等的四边形是矩形; B.底角相等的两个等腰三角形全等 C.一条对角线将平行四边形分成的两个三角形相似 D.圆是中心对称图形而不是轴对称图形 7.下列命题为假命题的是( ) A.等腰三角形两腰相等; B.等腰三角形的两底角相等 C.等腰三角形底边上的中线与底边上的高重合;D.等腰三角形是中心对称图形 8.下列的真命题中,它的逆命题也真的是( ) A.全等三角形的对应角相等 B.两个图形关于轴对称,则这两个图形是全等形 C.等边三角形是锐角

4、三角形 D.直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半 9.如图4所示,已知△ABC中,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S, 则三个结论:①AS=AR;②QP∥AR;③△BRP≌△QSP中( ) A.全部正确 B.仅①和②正确; C.仅①正确 D.仅①和③正确 10.观察下列图形,并阅读图形下面的相关文字,如图所示: 两条直线相交,三条直线相交,四条直线相交,最多有一个交点,最多有三个交点;最多有6个交点,像这样,10条直线相交,最多交点的个数是( ) A.40个 B.

5、45个 C.50个 D.55个 11.使两个直角三角形全等的条件是( ) A.一锐角对应相等 B.一条边对应相等 C.两锐角对应相等 D.两条直角边对应相等 12.下列条件中,不能使两个三角形全等的条件是( ) A.两边一角对应相等; B.两角一边对应相等 C.三边对应相等; D.两边和它们的夹角对应相等 二、填空题:(16题3分,其余每空1分,共40分) 13.如图6所示,△OCA≌△OBD,∠C和∠B、∠A和∠D是对应角,则另一组对应角是______和______,对应边是______和

6、和_______,______ 和____ 14.在△ABC和△KMN中,AB=KM,AC=KM,∠A=∠K,则△ABC≌______,∠C=____. 15.如图7所示,△ABC≌△EFC,BC=FC,AC⊥BE,则AB=____,AC=____,∠B= _____,∠A=____. 16.如图8所示,AD⊥BC,DE⊥AB,DF⊥AC,D、E、F是垂足,BD=CD, 那么图中的全等三角形有_________________________________________________. 17.如图9所示,△ABC≌△ADE,∠B=30°,∠EAD

7、24°,∠C=32°,则∠D=____, ∠DAC=______. 18.在△ABC中,∠A=90°,CD是∠C的平分线,交AB于D点,DA=7,则D点到BC的距离是_______. 19.命题“垂直于同一条直线的两直线平行”的题设是___________________________. 20.命题:“平行于同一条直线的两直线平等”的结论是_________________________. 21.将命题“等角的补角相等”写成“如果……, 那么……”的形式为________________. 22.如图10所示,在推理“图为∠1=∠4,所以BD∥AC ”的后面应注的理由是____

8、 23.如图11所示,已知AB=DC,根据(SAS)全等识别法,要使△ABC≌△DCB, 只需增加一个条件是_________________________. 24.如图12所示,在⊙O中, ,且∠BOC=70°,将△AOC顺时针旋转_____ 度能与△______重合,所以,△_____≌△_______. 25.如图13所示,线段AC和BD交于O点,且OA=OC,AE∥FC,BE=FD, 则图中有______对全等三角形,它们是______________. 26.将长度为20cm的铁丝折成三边长均为整数的三角形,那么, 不全等的三角形的个数为________

9、 27.如图14所示,把△ABC绕点A按逆时针旋转就得△ADE,则AB=______,BC= ____,AC=_______,∠B=_____,∠C=______,∠BAC=______. 28.如图15所示,在△ABC和△ABD中,∠C=∠D=90°,要使△ABC≌△ABD, 还需增加一个条件是__________. 29.如图16,AB=DC,AD=BC,∠1=50°,∠2=48°,则∠B的度数是______. 三、解答题:(每题6分,共36分) 30.判断下列命题是真命题还是假命题,若是假命题,请举出一个反例说明. (1)有一个角是60°的等腰三角形是等边三角形.

10、 (2)有两个角是锐角的三角形是锐角三角形. 31.如图所示,已知CD⊥AB于点D,BE⊥AC于点E,BE、CD交于点O,且AO 平分∠BAC. 求证:OB=OC. 32.如图所示,已知点A、E、F、D在同一条直线上,AE=DF,BF⊥AD,CE⊥AD, 垂足分别为F、E,BF=CE,求证:AB∥CD. 33.如图所示,已知∠DBC=∠ACB,∠ABO=∠DCO,求证:AO=DO. 34.如图所示,已知在四边形ABCD中,E是AC上一点,∠BAC=∠DAC,∠BCA= ∠DCA. 求证:∠DEC=∠

11、BEC. 35.如图所示,AB=AE,∠ABC=∠AED,BC=ED,点F是CD的中点. (1)求证:AF⊥CD; (2)在连结BE后,你还能得出什么新结论?请写出三个(不要求证明). 四、学科内综合题:(6分) 36.如图所示,已知AB为⊙O的直径,C、D为圆上两点,CE⊥AB,DF⊥AB, 垂足分别为E、F,且,求证:CE=DF. 五、拓展探究:((1)题2分,(2)题6分,共8分) 37.如图所示,过线段AB的两端作直线L1∥L2,作同旁内角的平分线交于点 E,过点E

12、作直线DC分别和直线L1、L2交点D、C,且点D、C在AB的同侧,与A、B不重合. (1)用圆规、直尺测量比较AD+BC和AB是不是相等,写出你的结论; (2)用已学过的原理对结论加以分析,揭示其中的规律. 六、学科间综合题:(6分) 38.如图所示,已知当物体AB距凸透镜为2倍焦距,即AO=2f时,成倒立的等大的像A′B′.求像距OA′与f的关系. 答案: 一、 1.D 2.A 3.C 4.D 5.B 6.C 7.D 8.D 9.B 10.B 11.D12.A 二、 1

13、3.∠AOC和∠DOB;OA和OD;OC和OB;AC和DB. 14.△KMN;∠N. 15.EF;EC;∠CFE;∠CEF. 16.△ABD≌△ACD,△ADE≌△ADF,△BDE≌△CDF 17.36°;24° 18.7 19.两条直线垂直于同一条直线. 20.两直线平行 21.如果两个角相等,那么它们的补角也相等. 22.内错角相等,两直线平行. 23.∠ABC=∠DCB 24.70°;BOD;AOC;BOD. 25.3;△AOE≌△COF、△AOB≌△COD、△CDF≌△ABE. 26.8 27.AD;DE;AE;∠D;∠E;∠DAE. 28

14、BC=BD(只要填一个符合要求的条件即可) 29.82° 三、 30.(1)真命题;(2)假命题.例如:若在△ABC中,∠A=20°,∠B=30°,∠C= 130°,则△ABC是钝角三角形. 点拨:正确理解命题,并能够判别命题的真假是非常重要的. 31.证明:如答图所示:∵CD⊥AB,BE⊥AC,∴∠ODA=∠OEA. ∵OA平分∠BAC, ∴∠BAO=∠CAO, 又OA=OA,∴△OAD≌△OAE,∴OD=OE, 在△OBD和△OCE中,OD=OE,∠ODB=∠OEC,∠BOD=∠COE, ∴△OBD≌△OCE,∴OB=OC. 点拨:此题通过两次全等使问

15、题得以解决,读者往往错误地直接用△OAB ≌△OAC来解答. 32.证明:∵∠DBC=∠ACB,∠ABO=∠DCO, ∴∠DBC+∠ABO=∠ACB+∠DCO, 即∠ABC=∠DCB, 又∠ACB=∠DBC,BC=CB,∴△ACB≌△DBC,∴AB=DC. ∵∠ABO=∠DCO, ∠AOB=∠DOC,∴△ABO≌△DCO,∴OA=OD. 点拨:此题应用两次全等使问题得证,学生易直接误认为△ABO≌△CDO. 33.略 34.证明:在△ABC和△ADC中,∠BAC=∠DAC,AC=AC,∠BCA=∠DCA, ∴△BAC≌△DAC,∴BC=DC. 在△DCE和△BCE中,EC=E

16、C,∠DCE=∠BCE,CD=CB, ∴△DCE≌△BCE,∴∠DEC=∠BEC. 点拨:应认真观察图形,能从图中正确地找出所证的全等三角形, 能灵活地选择与应用两三角形全等的识别法. 35.(1)证明:如答图所示.连结AC、AD, 在△ABC和△AED中,AB=AE,∠ABC= ∠AED,BC=ED, ∴△ABC≌△AED,∴AC=AD, 又∵FC=FD,∴AF⊥CD. (2)BE⊥AF,BE∥CD,△ABE是等腰三角形. 点拨:此题是几何中的证明及探索题型的综合应用,有助于培养我们探究的意识. 四、 36.证明:∵,∴AC=BD. ∵CE⊥AB,DF⊥

17、AB,∴∠CEA=∠DFB=90°, ∵AB为直径,且,∴,∴∠A=∠B. 在△AEC和△BFD中,AC=BD, ∠CEA= ∠DFB=90°,∠A=∠B ∴△AEC≌△BFD,∴EC=FD. 点拨:本题是两三角形全等在圆中的综合应用,进一步加强了学科内的知识的联系. 五、 37.(1)解:AD+BC=AB (2)如答图所示,延长AE与 交于点F, ∵L1 ∥L2 ,∴∠1=∠F, ∵∠1=∠2,∴∠2=∠F,∴BA=BF,∴△BAF为等腰三角形. ∵∠3=∠4,∴EA=EF. 在△AED和△FEC中,∠1= ∠F,AE=FE,∠5=∠6, ∴△AED≌△FEC,∴AD=CF. ∵BF=BC+CF,∴BF=BC+ AD, 故BC+AD=AB. 点拨:此题是几何中的综合拓展探究题,应认真分析, 加强各知识点的沟通与联系. 六、 38. 解:在△AOB和△A′OB′中, ∵AB=A′B′,∠BAO=∠B′A′O, ∠BOA=∠B′OA′, ∴△AOB≌△A′OB′,∴OA′=OA. ∵OA=2f,∴OA′=2f. 点拨: 本题是光学知识问题运用全等三角形的识别及特征来解决的一道典型的跨学科题目,解决它,有利于培养读者跨学科研究的意识. - 8 -

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服