ImageVerifierCode 换一换
格式:DOCX , 页数:10 ,大小:246.81KB ,
资源ID:12023460      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/12023460.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(铝的晶格常数-体弹模量及弹性常数分子模拟.docx)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

铝的晶格常数-体弹模量及弹性常数分子模拟.docx

1、Calculation of material lattice constant and bulk modulus 2012 CC Calculation of material lattice constant and bulk modulus Summary: Aluminum is one of the world's most used metals, the calculated aluminum lattice constant and bulk modulus can be used to improve the performance of the alu

2、minum consequently make better use of aluminum. In virtue of molecular dynamics simulation software,we can solve the lattice constant . By the derivative of the lattice constant, the bulk modulus can be obtained. The elastic constants of a material display the elasticity and we can use the software

3、material studio to simulate and get them. The simulation results match the experimental values. Key words: Aluminum, lattice constant, bulk modulus, elastic constant , simulation. Introduction: In materials science, in order to facilitate analysis about the way in which the crystal part

4、icles are arranged, the basic unit can be removed from the crystal lattice as a representative (usually the smallest parallel hexahedron) as a composition unit of dot matrix, called a cell (i.e. solid State Physics "original cell" concept); lattice constant (or so-called lattice constant) refers to

5、the side length of the unit cell, in other words, the side length of each parallel hexahedral cells. Lattice constant is an important basic parameters of crystal structure. Figure A is the basic form of the lattice constant. Figure A Lattice constant is a basic structural paramet

6、er,which has a direct relationship with the bondings between the atoms ,of the crystal substance. It reflects the changes in the internal composition of the crystal of the lattice constant, force state changes, etc. The bulk modulus (K or B) of a substance measures the substance's resistance to uni

7、form compression. It is defined as the ratio of the infinitesimal pressure increase to the resulting relative decrease of the volume. Its base unit is the pascal. Figure B describes the effect of bulk modulus. Figure B The bulk modulus can be formally defined by the equation: where is press

8、ure, is volume, and denotes the derivative of pressure with respect to volume. Our research object is aluminum,whose atomic number is 13 and relative mass is 27.The reserves of aluminum ranks only second to ferrum compared with other metallic elements. Aluminum and aluminum alloy are considered th

9、e most economic and applicable in many application fields as a consequence of their excellent properties. What’s more,increased usage of aluminum will result from designers' increased familiarity with the metal and solution to manufacturing problems that limit some applications. The crystal struc

10、ture of aluminum is face-centered cubic. The experimental value of lattice constant and bulk modulus are 0.0.40491nm and 79.2Gpa. Computing theory and methods: Our simulation is on the basis that aluminum is of face-centered cubic crystal structure. We can get the exact value of lattice constant i

11、n virtue of molecular dynamics simulation software. Then by the derivation of lattice constant for energy E,we obtain bulk modulus. To start with ,compile a script for the use of operation and simulation in lammps. We set periodic boundary conditions in the script and create an analog box,whose x ,

12、y ,z coordinate values are all confined to [0,3].Run the script in lammps, calculating the potential energy,kinetic energy as well as the nearest neighbor atoms for each atom. Finally put out the potential energy function of aluminum. Extract the datas under the linux system produced by lammps to c

13、ontinue the computation by means of matlab,from which we can get the lattice constant through several times of matching. Figure C Figure C——the curve shows the relationship between cohesive energy and lattice constant,which is what we get in the process of computing in matlab,points out the latti

14、ce constant corresponding with the least cohesive energy. The horizontal ordinate of the rock bottom stand for the lattice constant of aluminum which can be clearly located as 0.40500nm. Since we have obtained the lattice constant,we simulated the visualization of aluminu’s crystal structure. Figur

15、e D is what we get through the visualization. Figure D The bulk modulus is defined as: As for cubic cell,the formula can be transformed into the following pattern: The bulk modulus can be calculated with the formula above combined with the lattice constant. Finally,the bulk modulus is

16、78.1Gpa. Besides,to enrich our research, we have calculated the elastic constants of aluminum. Because of the symmetry of face-centered cubic,aluminum only has three elastic constants. To reach the target ,we have to establish a cell of aluminum in the software material studio in the first pla

17、ce and then transform it into a primitive cell. Figure E and figure F are the cell and the primitive cell we have established during the simulation . Figure E Figure F It comes to the CASTEP step after the geometry optimization. We managed to make Ecut=350eV and Kpoints=16*16*16 ,both

18、 of which are extremely important and also sensitive to the calculation of elastic constant, after several trials. Figure G is the primitive cell that has been through the geometry optimization. Figure G The calculated results are as follows: C11=106.2Gpa C12=60.5Gpa C44=28.7Gpa Corresponding

19、ly ,the experimental range of the three elastic constants are listed below: C11=108~112Gpa C12=61.3~66Gpa C44=27.9~28.5Gpa As we can see,although a little outside of the value range of the experimental standards, our results are right within the error range. Conclusion: Our group has calculate

20、d the lattice constant and bulk modulus of aluminum,both of which coincide with the experimental value,by means of lammps and matlab. Moreover ,we have found out that bulk modulus has a close relationship with temperature. As lattice constant haven’t made any change under small change of temperature

21、 while the energy of the material have changed,so we concluded that temperature change can influence bulk modulus as a consequence of the change of cohesive energy change resulting from temperature change. There are still problems in our research as you can see that the three elastic constants are

22、a little out of the value range. But this group is the one closest to the experimental value. Our group have concluded that the errors result from the script which can affect the accuracy of the simulation. Besides,the most valuable thing we have learned is that we must seek the solutions and ne

23、ver give up in face of difficulties. References: [1]材料科学基础(胡赓祥、蔡珣、戎咏华 上海交通大学出版社) [2] Ayton, Gary; Smondyrev, Alexander M; Bardenhagen, Scott G; McMurtry, Patrick; Voth, Gregory A. “Calculating the bulk modulus for a lipid bilayer with none quilibrium molecular dynamics simulation". Biophysical S

24、ociety. 2002. [3] Cohen, Marvin (1985). "Calculation of bulk modulus of diamond and zinc-blende solids". Phys. Rev. B 32: 7988–7991. [4] Watson, I G; Lee, P D; Dashwood, R J; Young, P. Simulation of the Mechanical Properties of an Aluminum Matrix Composite using X-ray Microtomography: Physical Me

25、tallurgical and Materials Science. Springer Science & Business Media. 2006. [6] Ashley, Steven. Aluminum vehicle breaks new ground. Engineering--Mechanical Engineering. Feb 1994. [7] Sanders, Robert E, Jr; Farnsworth, David M. Trends in Aluminum Materials Usage for Electronics. Metallurgy. Oct 20

26、11. 附文:lammps脚本 units metal boundary p p p atom_style atomic variable i loop 20 variable x equal 4.0+0.01*$i lattice fcc $x region box block 0 3 0 3 0 3 create_box 1 box create_atoms 1 box pair_style adp pair_coeff * * AlCu.ad

27、p Al mass 1 27 neighbor 1 bin neigh_modify every 1 delay 5 check yes variable p equal pe/108 variable r equal 108/($x*3)^3 timestep 0.005 thermo 10 compute 3 all pe/atom compute 4 all ke/atom compute 5 all coord/atom 3 dump 1 all custom 100 dump.atom id xs y

28、s zs c_3 c_4 c_5 dump_modify 1 format"%d %16.9g %16.9g %16.9g %16.9g %16.9g %g" min_style sd minimize 1.0e-12 1.0e-12 1000 1000 print "@@@@ (lattice parameter,rho,energy per atom):$x $r $p" clear next i jump in.al 至于代码的含义,可参考其它资料或查询lammps官网manual。至于势函数,可在这个网站下载:http://www.ctcms.nist.gov/pot

29、entials/ 附言:整个过程大致如下: 1. 晶格常数:先安装lammps软件。ubuntu版的比较陌生,且安装比较复杂。建议安装windows版。编写脚本。附文即是一例,编写完后保存为in.---(后面自定义),同时要去除后缀名,以便lammps软件识别。然后在软件中输入:jump in.--- 。lammps即运行,运算结果以文件输出。 2. 体弹模量:用matlab处理,计算即可得到。 3. Vmd可视化:因为这是个静态过程,可视化显得可有可无。执行也比较简单,用上面输出的log.lammps文件,导入vmd软件中即可实现可视化。 4. 弹性常数:先安装materials studio。这个过程可能有点复杂,可参考其它资料。至于如何实现,也可查找分子模拟论坛。 总结:以上是我们的经验之谈,希望能帮到用得着的朋友,圆满完成任务。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服